
TECHNOLOGY IN ACTION™

Warren Gay

Raspberry Pi
System Software
Reference

 AN INDISPENSABLE GUIDE TO LINUX ON THE

RPI, FROM MASTERING THE RASPBERRY PI

•
•
•
•

R
a
sp

b
e
rry P

i S
yste

m
 S

o
ftw

a
re

 R
e
fe

re
n

ce

http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.itbookshub.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

Chapter 1: Preparation ■ ... 1

Chapter 2: Boot ■ ... 9

Chapter 3: Initialization ■ .. 45

Chapter 4: vcgencmd ■ .. 55

Chapter 5: Linux Console ■ .. 61

Chapter 6: Cross-Compiling ■ .. 63

Chapter 7: Cross-Compiling the Kernel ■ .. 79

Appendix A: Glossary ■ .. 91

Appendix B: Power Standards ■ .. 97

Appendix C: Raspbian apt Commands ■ .. 99

Appendix D: ARM Compile Options ■ ... 103

Appendix E: Mac OS X Tips ■ ... 105

Index .. 107

www.itbookshub.com

http://www.allitebooks.org

xix

Introduction

he Raspberry Pi, implemented as a System on a Chip (SoC), really does embody the
very idea of a “system”. here are several large hardware components that make up this
complex whole, that we call a system. When we then examine the software side that
drives this hardware, we see another body of components that make up the operating
system software.

As diferent as hardware is from software, they form a symbiotic relationship. he
hardware provides for external interactions with the world while the software internalizes
its inputs and determines the external actions that should result.

Content of this Book
his particular book is focused on system software aspects of the Raspberry Pi. he
content was extracted from the complete volume “Mastering the Raspberry Pi” for those
that want to focus on this area alone.

While the Pi is not restricted to running one operating system, this title assumes that
the student will be working with Raspbian Linux. his is the platform supported by the
Raspberry Pi Foundation and as a result, will represent the easiest path for learning.

Chapter 1 covers some very basic things that the beginning student may want to
hit the ground running with. hings like setting up a static IP address, using ssh and
VNC. Chapter two then jumps right into what happens when your Raspberry Pi boots.
Files connected with booting and boot coniguration is covered as a reference. But what
happens after booting? Chapter 3 looks at how Raspbian Linux pulls itself up from its
bootstraps. It examines how services get started and terminated.

Chapter 4 documents the vcgencmd command, which is unique to the Raspberry
Pi. It reports and conigures special aspects of the hardware. he Linux Console chapter
covers the coniguration of Linux consoles, including serial port consoles.

Chapters 6 and 7 are important to software developers of the Pi. he irst is dedicated
to the building and installing a cross-compiler environment for faster, more convenient
development on fast hardware like your desktop system. For those that want to modify
their Linux kernel, the last chapter is for you. his chapter will guide you through the
steps needed to customize and build the Raspbian Linux kernel.

Assumptions about the Reader
Linux tends to be used as a catchall name to include more than just the kernel. In fact
some people suggest that it should be referred to as GNU/Linux instead. his is because
so much of the involved software is actually provided by the Free Software Foundation

www.itbookshub.com

http://www.allitebooks.org

■ INTRODUCTION

xx

(FSF), aside from the Linux kernel. However you wish to frame it, the reader is assumed to
either have some experience with Linux, or is developing some along the way.

For the section about Raspbian Linux initialization, knowledge of shell programming
is an asset when creating or modifying the system startup procedures. Otherwise, a basic
concept of Linux processes is suicient for understanding.

Users of cross-compilers for application software development are expected to
have some familiarity with the Linux developer tools. his includes the make command
and the compiler/linker. Building the kernel can be done by the less experienced, but
developer experience is an asset.

Working with the Raspberry Pi often results in bumping into a number of terms
and acronyms like GPU or TCP. his book has assumed an intermediate to advanced
level audience and consequently these terms are generally not explained. For readers
encountering these terms for the irst time, the Glossary in Appendix A is there to help.

Finally, as the end user installs or conigures his Raspberry Pi, some of the example
administration commands found in Appendix C may be useful as a cheat sheet. In most
cases, the commands necessary will have already been presented in the text where
needed. Mac OS X users will also ind Mac speciic tips in Appendix E.

www.itbookshub.com

http://www.allitebooks.org

1

CHAPTER 1

Preparation

While it is assumed that you’ve already started with the Raspberry Pi, there may be a few
things that you want to do before working through the rest of this book. For example, if
you normally use a laptop or desktop computer, you may prefer to access your Pi from
there. Consequently, some of the preparation in this chapter pertains to network access.

If you plan to do most or all of the projects in this book, I highly recommend using
something like the Adafruit Pi Cobbler (covered later in this chapter). This hardware breaks
out the GPIO lines in a way that you can access them on a breadboard. If you’re industrious,
you could build a prototyping station out of a block of wood. I took this approach but would
buy the Adafruit Pi Cobbler if I were to do it again (this was tedious work).

Static IP Address
The standard Raspbian SD card image provides a capable Linux system, which when
plugged into a network, uses DHCP to automatically assign an IP address to it. If you’d
like to connect to it remotely from a desktop or laptop, then the dynamic IP address that
DHCP assigns is problematic.

There are downloadable Windows programs for scanning the network. If you are
using a Linux or Mac host, you can use Nmap to scan for it. The following is an example
session from a MacBook Pro, using the MacPorts collection nmap command. Here a range
of IP addresses are scanned from 1–254:

$ sudo nmap −sP 192.168.0.1−254
Starting Nmap 6.25 (http://nmap.org) at 2013−04−14 19:12 EDT
. . .
Nmap scan report for mac (192.168.0.129)
Host is up.
Nmap scan report for rasp (192.168.0.132)
Host is up (0.00071s latency).
MAC Address : B8:27:EB:2B:69:E8 (Raspberry Pi Foundation)
Nmap done : 254 IP addresses (6 hosts up) scanned in 6.01 seconds
$

In this example, the Raspberry Pi is clearly identified on 192.168.0.132, complete
with its MAC address. While this discovery approach works, it takes time and is
inconvenient.

www.itbookshub.com

http://nmap.org/
http://www.allitebooks.org

CHAPTER 1 ■ PREPARATION

2

If you’d prefer to change your Raspberry Pi to use a static IP address, you can find
instructions in the “Wired Ethernet” section in Chapter 7 of Raspberry Pi Hardware

Reference (Apress, 2014).

Using SSH
If you know the IP address of your Raspberry Pi or have the name registered in your hosts
file, you can log into it by using SSH. In this example, we log in as user pi on a host named
rasp (in this example, from a Mac):

$ ssh pi@rasp
pi@rasp’s password:
Linux raspberrypi 3.2.27+ #250 PREEMPT ... armv6l
...
Last login : Fri Jan 18 22:19:50 2013 from 192.168.0.179
$

Files can also be copied to and from the Raspberry Pi, using the scp command. Do a
man scp on the Raspberry Pi to find out more.

It is possible to display X Window System (X-Window) graphics on your laptop/
desktop, if there is an X-Window server running on it. (Windows users can use Cygwin for
this, available from www.cygwin.com.) Using Apple's OS X as an example, first configure
the security of your X-Window server to allow requests. Here I’ll take the lazy approach of
allowing all hosts (performed on the Mac) by using the xhost command:

$ xhost +
access control disabled, clients can connect from any host
$

From the Raspberry Pi, connected through the SSH session, we can launch Xpdf, so
that it opens a window on the Mac:

$ export DISPLAY=192.168.0.179:0
$ xpdf &

Here, I’ve specified the Mac’s IP address (alternatively, an /etc/hosts name could
be used) and pointed the Raspberry Pi to use the Mac’s display number :0. Then we run
the xpdf command in the background, so that we can continue to issue commands in the
current SSH session. In the meantime, the Xpdf window will open on the Mac, while the
Xpdf program runs on the Raspberry Pi.

This doesn’t give you graphical access to the Pi’s desktop, but for developers, SSH is
often adequate. If you want remote graphical access to the Raspberry’s desktop, see the
next section, where VNC is introduced.

www.itbookshub.com

http://www.cygwin.com/
http://www.allitebooks.org

CHAPTER 1 ■ PREPARATION

3

VNC
If you’re already using a laptop or your favorite desktop computer, you can conveniently
access your Raspberry Pi’s graphical desktop over the network. Once the Raspberry
Pi’s VNC server is installed, all you need is a VNC client on your accessing computer.
Once this is available, you no longer need a keyboard, mouse, or HDMI display device
connected to the Raspberry Pi. Simply power up the Pi on your workbench, with a
network cable plugged into it.

You can easily install the VNC server software on the Pi at the cost of about 10.4
MB in the root file system. The command to initiate the download and installation is as
follows:

$ sudo apt–get install tightvncserver

After the software is installed, the only remaining step is to configure your access
to the desktop. The vncserver command starts up a server, after which you can connect
remotely to it.

Using SSH to log in on the Raspberry Pi, type the following command:

$ vncserver :1 –geometry 1024x740 –depth 16 –pixelformat rgb565

You will require a password to access your desktop.

Password:
Verify:
Would you like to enter a view–only password (y/n) ? n
New 'X' desktop is rasp:1

Creating default startup script/home/pi/.vnc/xstartup Starting applications
specified in/home/pi/.vnc/xstartup
Log file is/home/pi/.vnc/rasp:1.log
$

The password prompts are presented only the first time that you start the VNC server.

Display Number
In the vncserver command just shown, the first argument identifies the display number.
Your normal Raspberry Pi X-Window desktop is on display :0. So when you start up
a VNC server, choose a new unique display number like :1. It doesn’t have to be the
number 1. To a limited degree, you can run multiple VNC servers if you find that useful.
For example, you might choose to start another VNC server on :2 with a different display
resolution.

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 1 ■ PREPARATION

4

Geometry
The -geometry 1024x740 argument configures the VNC server’s resolution in pixels. This
example’s resolution is unusual in that normally 1024×768 would be used for a display
resolution, a common geometry choice for monitors. But this need not be tied to a
physical monitor resolution. I chose the unusual height of ×740 to prevent the VNC client
program from using scrollbars (on a Mac). Some experimentation may be required to find
the best geometry to use.

Depth
The -depth 16 argument is the pixel-depth specification. Higher depths are possible, but
the resulting additional network trafficc might curb your enthusiasm.

Pixel Format
The last command-line argument given is -pixelformat rgb565. This particular example
specifies that each pixel is 5 bits, 6 bits, 5 bits—for red, green and blue, respectively.

Password Setup
To keep unauthorized people from accessing your VNC server, a password is accepted
from you when you start the server for the first time. The password chosen can be
changed later with the vncpasswd command.

Server Startup
If you often use VNC, you may want to define a personal script or alias to start it on
demand. Alternatively, have it started automatically by the Raspberry Pi as part of the
Linux initialization. See Chapter 3 for more information about initialization scripts.

VNC Viewers
To access your VNC server on the Raspberry Pi, you need a corresponding VNC viewer on
the client side. On the Mac, you can use the MacPorts collection to install a viewer:

$ sudo port install vnc

Once the viewer is installed, you can access your VNC server on the Raspberry Pi at
192.168.0.170, display :1, with this:

$ vncviewer 192.168.0.170:1

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 1 ■ PREPARATION

5

If you have your Raspberry Pi in the hosts file under rasp, you can use the name
instead:

$ vncviewer rasp:1

When the VNC viewer connects to the server, you will be prompted for a password.
This obviously keeps others out of your VNC server.

For Ubuntu Linux, you can install the xvnc4viewer package. For Windows, several
choices are available, such as RealVNC and TightVNC.

If you find that the screen resolution doesn’t work well with your client computer,
experiment with different VNC server resolutions (-geometry). I prefer to use a resolution
that doesn’t result in scrollbars in the viewer. Scrolling around your Raspberry Pi
desktop is a nuisance. You can eliminate the need for scrolling by reducing the geometry
dimensions.

Stopping VNC Server
Normally, you don’t need to stop the VNC server if you are just going to reboot or shut
down your Raspberry Pi. But if you want to stop the VNC server without rebooting, this
can be accomplished. Supply the display number that you used in the VNC server startup
(:1 in this example) using the -kill option:

$ vncserver –kill :1

This can be useful as a security measure, or to save CPU resources when the server
isn’t being used. This can also be useful if you suspect a VNC software problem and need
to restart it.

Prototype Station
The danger of working with the tiny Raspberry Pi’s PCB is that it moves all over the
surface as wires tug at it. Given its low mass, it moves easily and can fall on the floor and
short wires out in the process (especially around curious cats).

For this reason, I mounted my Raspberry Pi on a nice block of wood. A small plank
can be purchased from the lumberyard for a modest amount. I chose to use teak since
it looks nice and doesn’t crack or warp. Even if you choose to use something like the
Adafruit Pi Cobbler, you may find it useful to anchor the Raspberry Pi PCB. Mount the
PCB on the wood with spacers. Figure 1-1 shows my prototype station.

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 1 ■ PREPARATION

6

Retro Fahnestock clips were installed and carefully wired to a connector on header
strip P1 (the wiring was the most labor-intensive part of this project).

Tip ■ Fahnestock clips can be economically purchased at places like

www.tubesandmore.com (part # S-H11-4043-6).

A small PCB for the RS-232 interface was acquired from eBay ($2.32 total) and
mounted at the end of the station. Wires from the RS-232 PCB were routed back to RX/TX
and +3.3 V clips and simply clipped into place (this allows you to disconnect them, if you
wish to use those GPIO pins for some other purpose). The RS-232 PCB is permanently
grounded for convenience.

The RS-232 PCB is necessary only for those who wish to use a serial console or
to interface with some other serial device. The PCB acquired was advertised on eBay
as “MAX232CSE Transfer Chip RS-232 To TTL Converter Module COM Serial Board.”
The converter (based on the MAX232CSE chip) will work with TTL or 3.3 V interfaces.
Connecting the RS-232 converter’s VCC connection to the Raspberry Pi +3.3 V supply
makes it compatible with the Pi.

Caution ■ Do not connect the RS-232 converter to +5 V, or you will damage the Pi.

For additional information about this, see Chapter 9 of Raspberry Pi Hardware Reference

(Apress, 2014).

Figure 1-1. A simple prototype station

http://www.tubesandmore.com/

CHAPTER 1 ■ PREPARATION

7

In Figure 1-1 you can see a simple bracket holding a small push button (top right).
This has been wired up to P6 for a reset button. This is not strictly required if your power
supply is working correctly (power-on reset works rather well). Unlike an AVR setup, you

are not likely to use reset very often. Chapter 3 of Raspberry Pi Hardware Reference (Apress,
2014) has more details about this.

The LED was added to the station last. It was soldered to a pair of half-inch finishing
nails, nailed into the wood. The LED’s cathode has a 220 W resister soldered in series with
it to limit the current and wired to ground. The anode is connected to the Fahnestock clip
labeled LED. The LED can be tested by connecting an alligator lead from the LED clip to
the +3.3 V supply clip (this LED also tolerates +5 V). Be sure to choose a low- to medium-
current LED that requires about 10 mA or less (16 mA is the maximum source current
from a GPIO pin).

To test your prototyping station, you may want to use the script listed in the “GPIO
Tester” section in Chapter 10 of Raspberry Pi Hardware Reference (Apress, 2014). That
script can be used to blink a given GPIO pin on and off in 1-second intervals.

Adafruit Pi Cobbler
A much easier approach to prototype connections for GPIO is to simply purchase the
Adafruit Pi Cobbler kit, which is available from the following site:

learn.adafruit.com/adafruit-pi-cobbler-kit/overview

This kit provides you with these features:

Header connector for the Pi’s P1•฀

Ribbon cable•฀

Small breakout PCB•฀

Breakout header pins•฀

After assembly, you plug the ribbon cable onto the header P1. At the other end
of the ribbon cable is a small PCB that provides 26 pins that plug into your prototype
breadboard. A small amount of assembly is required.

Gertboard
Students might consider using a Gertboard, which is available from this site:

uk.farnell.com

The main reason behind this recommendation is that the Raspberry Pi’s connections
to the outside world are sensitive, 3.3 V, and vulnerable to static electricity. Students
will want to connect all manner of buttons, switches, motors, and relays. Many of these
interfaces require additional buffers and drivers, which is what the Gertboard is there for.

http://learn.adafruit.com/adafruit-pi-cobbler-kit/overview
http://uk.farnell.com

CHAPTER 1 ■ PREPARATION

8

In addition to providing the usual access to the Pi’s GPIO pins, the Gertboard also
provides these features:

Twelve •฀ buffered I/O pins

Three push buttons•฀

Six open collector drivers (up to 50 V, 500 mA)•฀

A motor controller (18 V, 2 A)•฀

A two-channel 8/10/12 bit digital-to-analog converter•฀

A two-channel 10-bit analog-to-digital converter•฀

A 28-pin DIP ATmega microcontroller•฀

This provides a ready-made learning environment for the student, who is anxious
to wire up something and just “make it work.” Many of the 3-volt logic and buffering
concerns are eliminated, allowing the student to focus on projects.

Bare Metal
Despite the availability of nice adapters like the Gertboard, the focus of this text is on
interfacing directly to the Pi’s 3 V GPIO pins. Here are some of the reasons:

No specific adapter has to be purchased for the projects in this book.•฀

Any specified adapter can go out of production.•฀

You’ll not likely use an expensive adapter on each •฀ deployed Pi.

Bare metal interfacing will exercise your design skills.•฀

If we were to do projects with only wiring involved, there wouldn’t be much learning
involved. Facing the design issues that arise from working with weak 3 V GPIOs driving
the outside world will be much more educational.

The third bullet speaks to finished projects. If you’re building a robot, for example,
you’re not going to buy Gertboards everywhere you need to control a motor or read
sensor data. You’re going to want to economize and build that yourself. This book is
designed to help you face those kinds of challenges.

9

CHAPTER 2

Boot

When the power is first applied to the Raspberry Pi, or it has been reset (for more
information, see the “Reset” section in Chapter 3 of Raspberry Pi Hardware Reference
[Apress, 2014]), a boot sequence is initiated. As you will see in this chapter, it is the GPU
that actually brings up the ARM CPU.

The way that the Raspberry Pi is designed, it must be booted from firmware found on
the SD card. It cannot boot from any other source. RISC code for the GPU is provided by
the Raspberry Pi Foundation in the file bootcode.bin.

After the second-stage boot loader has been executed, it is possible that other
operating systems or ARM boot loaders such as U-Boot can be initiated.

Booting ARM Linux
Generally speaking, Linux under the ARM architecture needs a small amount of
assistance to get started. The following are some of the minimal things that the boot
loader needs to do:25

1. Initialize and configure memory (with MMU, cache, and DMA
disabled)

2. Load the kernel image into memory

3. Optionally, load an initial RAM disk image

4. Initialize and provide boot parameters to the loaded kernel
(ATAG list)

5. Obtain/determine the Linux machine type (MACH_TYPE)

6. Execute the kernel image with the correct starting register
values (r1 = machine number, r2 points to the ATAG list)

7. Additionally, the boot loader is expected to perform some
initialization of a serial and/or video console.

In the Raspberry Pi, this boot-loading assistance comes from the embedded GPU in
the SoC. The GPU supports a small RISC core that is able to run from initial code found
in its ROM. From this small amount of code, the GPU is able to initialize itself and the SD
card hardware. From the media on the SD card, it is able to bootstrap itself the rest of the
way. For this reason, the Raspberry Pi must always bootstrap from an SD card.

CHAPTER 2 ■ BOOT

10

Boot Sequence
This section looks at the startup sequence in greater detail. The participating hardware
components, the files and data elements are considered. The boot procedure consists of
the following sequence of events:

1. At power-up (or reset), the ARM CPU is offline.23

2. A small RISC core in the GPU begins to execute SoC ROM
code (first-stage boot loader).

3. The GPU initializes the SD card hardware.

4. The GPU looks at the first FAT32 partition in the SD media.
(There remains some question about specific limitations as
Broadcom has documented this—for example, can it boot
from a first FAT16 partition?)

5. The second-stage boot-loader firmware named bootcode.bin
is loaded into the GPU.

6. The GPU control passes to the loaded bootcode.bin firmware
(SDRAM is initially disabled).

7. The file start.elf is loaded by the GPU into RAM from the
SD card.

8. An additional file, fixup.dat, is used to configure the SDRAM
partition between GPU and ARM CPU.

9. The file config.txt is examined for configuration parameters
that need to be processed.

10. Information found in cmdline.txt is presumably also passed
to start.elf.

11. The GPU allows the ARM CPU to execute the program
start.elf.

12. The module start.elf runs on the ARM CPU, with
information about the kernel to be loaded.

13. The kernel is loaded, and execution control passes to it.

Boot Files
The FAT32 partition containing the boot files is normally mounted as /boot, after
Raspbian Linux has come up. Table 2-1 lists the files that apply to the boot process. The
text files can be edited to affect new configurations. The binary files can also be replaced
by new revisions of the same.

CHAPTER 2 ■ BOOT

11

config.txt
The config.txt file permits you to configure many aspects of the boot process. Some
options affect physical devices, and others affect the kernel being loaded.

Composite Video Settings
The composite video output from the Raspberry Pi is primarily configured by three basic
parameters:

•฀ sdtv_mode

•฀ sdtv_aspect

•฀ sdtv_disable_colourburst

Standard Definition Video

The parameter sdtv_mode determines the video mode (TV standard) of the composite
video output jack.

sdtv_mode Description

0 Normal NTSC (default)

1 Japanese NTSC (no pedestal)

2 Normal PAL

3 Brazilian PAL 525/60

Table 2-1. /boot Files

File Name Purpose Format

bootcode.bin Second-stage boot loader Binary

fixup.dat Configure split of GPU/CPU SDRAM Binary

config.txt Configuration parameters Text

cmdline.txt Command-line parameters for kernel Text

start.elf ARM CPU code to be launched Binary

kernel.img Kernel to be loaded Binary

Name can be overridden with kernel= parameter
in config.txt

CHAPTER 2 ■ BOOT

12

Composite Aspect Ratio

The sdtv_aspect parameter configures the composite video aspect ratio.

sdtv_aspect Description

1 4:3 (default)

2 14:9

3 16:9

Color Burst

By default, color burst is enabled. This permits the generation of color out of the composite
video jack. Setting the video for monochrome may be desirable for a sharper display.

sdtv_disable_colourburst Description

0 Color burst enabled (default)

1 Color burst disabled (monochrome)

High-Definition Video
This section covers config.txt settings that affect HDMI operation.

HDMI Safe Mode

The hdmi_safe parameter enables support of automatic HDMI configuration for optimal
compatibility.

hdmi_safe Description

0 Disabled (default)

1 Enabled

When hdmi_safe=1 (enabled), the following settings are implied:

•฀ hdmi_force_hotplug=1

•฀ config_hdmi_boost=4

•฀ hdmi_group=1

•฀ hdmi_mode=1

•฀ disable_overscan=0

CHAPTER 2 ■ BOOT

13

HDMI Force Hot-Plug

This configuration setting allows you to force a hot-plug signal for the HDMI display,
whether the display is connected or not. The NOOBS distribution enables this setting by
default.

hdmi_force_hotplug Description

0 Disabled (non-NOOBS default)

1 Use HDMI mode even when no HDMI monitor is detected
(NOOBS default)

HDMI Ignore Hot-Plug

Enabling the hdmi_ignore_hotplug setting causes it to appear to the system that no
HDMI display is attached, even if there is. This can help force composite video output,
while the HDMI display is plugged in.

hdmi_ignore_hotplug Description

0 Disabled (default)

1 Use composite video even if an HDMI display is detected

HDMI Drive

This mode allows you to choose between DVI (no sound) and HDMI mode (with sound,
when supported).

hdmi_drive Description

1 Normal DVI mode (no sound)

2 Normal HDMI mode (sound will be sent if supported and enabled)

CHAPTER 2 ■ BOOT

14

HDMI Ignore EDID

Enabling this option causes the EDID information from the display to be ignored.
Normally, this information is helpful and is used.

hdmi_ignore_edid Description

Unspecified Read EDID information

0xa5000080 Ignore EDID information

HDMI EDID File

When hdmi_edid_file is enabled, the EDID information is taken from the file named
edid.txt. Otherwise, it is taken from the display, when available.

hdmi_edid_file Description

0 Read EDID data from device (default)

1 Read EDID data from edid.txt file

HDMI Force EDID Audio

Enabling this option forces the support of all audio formats even if the display does not
support them. This permits pass-through of DTS/AC3 when reported as unsupported.

hdmi_force_edid_audio Description

0 Use EDID-provided values (default)

1 Pretend all audio formats are supported

Avoid EDID Fuzzy Match

Avoid fuzzy matching of modes described in the EDID.

avoid_edid_fuzzy_match Description

0 Use fuzzy matching (default)

1 Avoid fuzzy matching

CHAPTER 2 ■ BOOT

15

HDMI Group

The hdmi_group option defines the HDMI type.

hdmi_group Description

0 Use the preferred group reported by the EDID (default)

1 CEA

2 DMT

HDMI Mode

This option defines the screen resolution to use in CEA or DMT format (see the
parameter hdmi_group in the preceding subsection “HDMI Group”). In Table 2-2, the
modifiers shown have the following meanings:

H means 16:9 variant of a normally 4:3 mode.

2x means pixel doubled (higher clock rate).

4x means pixel quadrupled (higher clock rate).

R means reduced blanking (fewer bytes are used for blanking
within the data stream, resulting in lower clock rates).

Table 2-2. HDMI Mode Settings

Group

Mode

CEA

Resolution Refresh Modifiers

DMT

Resolution Refresh Notes

1 VGA 640×350 85 Hz

2 480 p 60 Hz 640×400 85 Hz

3 480 p 60 Hz H 720×400 85 Hz

4 720 p 60 Hz 640×480 60 Hz

5 1080 i 60 Hz 640×480 72 Hz

6 480 i 60 Hz 640×480 75 Hz

7 480 i 60 Hz H 640×480 85 Hz

8 240 p 60 Hz 800×600 56 Hz

9 240 p 60 Hz H 800×600 60 Hz

10 480 i 60 Hz 4x 800×600 72 Hz

(continued)

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 2 ■ BOOT

16

Group

Mode

CEA

Resolution Refresh Modifiers

DMT

Resolution Refresh Notes

11 480 i 60 Hz 4x H 800×600 75 Hz

12 240 p 60 Hz 4x 800×600 85 Hz

13 240 p 60 Hz 4x H 800×600 120 Hz

14 480 p 60 Hz 2x 848×480 60 Hz

15 480 p 60 Hz 2x H 1024×768 43 Hz Don’t use

16 1080 p 60 Hz 1024×768 60 Hz

17 576 p 50 Hz 1024×768 70 Hz

18 576 p 50 Hz H 1024×768 75 Hz

19 720 p 50 Hz 1024×768 85 Hz

20 1080 i 50 Hz 1024×768 120 Hz

21 576 i 50 Hz 1152×864 75 Hz

22 576 i 50 Hz H 1280×768 R

23 288 p 50 Hz 1280×768 60 Hz

24 288 p 50 Hz H 1280×768 75 Hz

25 576 i 50 Hz 4x 1280×768 85 Hz

26 576 i 50 Hz 4x H 1280×768 120 Hz R

27 288 p 50 Hz 4x 1280×800 R

28 288 p 50 Hz 4x H 1280×800 60 Hz

29 576 p 50 Hz 2x 1280×800 75 Hz

30 576 p 50 Hz 2x H 1280×800 85 Hz

31 1080 p 50 Hz 1280×800 120 Hz R

32 1080 p 24 Hz 1280×960 60 Hz

33 1080 p 25 Hz 1280×960 85 Hz

34 1080 p 30 Hz 1280×960 120 Hz R

35 480 p 60 Hz 4x 1280×1024 60 Hz

36 480 p 60 Hz 4x H 1280×1024 75 Hz

Table 2-2. (continued)

(continued)

CHAPTER 2 ■ BOOT

17

Group

Mode

CEA

Resolution Refresh Modifiers

DMT

Resolution Refresh Notes

37 576 p 50 Hz 4x 1280×1024 85 Hz

38 576 p 50 Hz 4x H 1280×1024 120 Hz R

39 1080 i 50 Hz R 1360×768 60 Hz

40 1080 i 100 Hz 1360×768 120 Hz R

41 720 p 100 Hz 1400×1050 R

42 576 p 100 Hz 1400×1050 60 Hz

43 576 p 100 Hz H 1400×1050 75 Hz

44 576 i 100 Hz 1400×1050 85 Hz

45 576 i 100 Hz H 1400×1050 120 Hz R

46 1080 i 120 Hz 1440×900 R

47 720 p 120 Hz 1440×900 60 Hz

48 480 p 120 Hz 1440×900 75 Hz

49 480 p 120 Hz H 1440×900 85 Hz

50 480 i 120 Hz 1440×900 120 Hz R

51 480 i 120 Hz H 1600×1200 60 Hz

52 576 p 200 Hz 1600×1200 65 Hz

53 576 p 200 Hz H 1600×1200 70 Hz

54 576 i 200 Hz 1600×1200 75 Hz

55 576 i 200 Hz H 1600×1200 85 Hz

56 480 p 240 Hz 1600×1200 120 Hz R

57 480 p 240 Hz H 1680×1050 R

58 480 i 240 Hz 1680×1050 60 Hz

59 480 i 240 Hz H 1680×1050 75 Hz

60 1680×1050 85 Hz

61 1680×1050 120 Hz R

62 1792×1344 60 Hz

63 1792×1344 75 Hz

Table 2-2. (continued)

(continued)

CHAPTER 2 ■ BOOT

18

Group

Mode

CEA

Resolution Refresh Modifiers

DMT

Resolution Refresh Notes

64 1792×1344 120 Hz R

65 1856×1392 60 Hz

66 1856×1392 75 Hz

67 1856×1392 120 Hz R

68 1920×1200 R

69 1920×1200 60 Hz

70 1920×1200 75 Hz

71 1920×1200 85 Hz

72 1920×1200 120 Hz R

73 1920×1440 60 Hz

74 1920×1440 75 Hz

75 1920×1440 120 Hz R

76 2560×1600 R

77 2560×1600 60 Hz

78 2560×1600 75 Hz

79 2560×1600 85 Hz

80 2560×1600 120 Hz R

81 1366×768 60 Hz

82 1080 p 60 Hz

83 1600×900 R

84 2048×1152 R

85 720 p 60 Hz

86 1366×768 R

Table 2-2. (continued)

CHAPTER 2 ■ BOOT

19

HDMI Boost

The config_hdmi_boost parameter allows you to tweak the HDMI signal strength.

config_hdmi_boost Description

0 Non-NOOBS default

1

2

3

4 Use if you have interference issues (NOOBS default setting)

5

6

7 Maximum strength

HDMI Ignore CEC Init

When this option is enabled, the CEC initialization is not sent to the device. This avoids
bringing the TV out of standby and channel switch when rebooting.

hdmi_ignore_cec_init Description

0 Normal (default)

1 Don’t send initial active source message

HDMI Ignore CEC

When this option is enabled, the assumption made is that CEC is not supported at all by
the HDMI device, even if the device does have support. As a result, no CEC functions will
be supported.

hdmi_ignore_cec Description

0 Normal (default)

1 Disable CEC support

CHAPTER 2 ■ BOOT

20

Overscan Video
A few options control the overscan support of the composite video output. When overscan
is enabled, a certain number of pixels are skipped at the sides of the screen as configured.

Disable Overscan

The disable_overscan option can disable the overscan feature. It is enabled by default:

disable_overscan Description

0 Overscan enabled (default)

1 Overscan disabled

Overscan Left, Right, Top, and Bottom

These parameters control the number of pixels to skip at the left, right, top, and bottom of
the screen.

Parameter Pixels to Skip

overscan_left=0 At left

overscan_right=0 At right

overscan_top=0 At top

overscan_bottom=0 At bottom

Frame Buffer Settings
The Linux frame buffer support is configured by a few configuration options described in
this section.

Frame Buffer Width

The default is to define the width of the frame buffer as the display’s width minus the
overscan pixels.

framebuffer_width Description

default Display width overscan

framebuffer_width=n Set width to n pixels

CHAPTER 2 ■ BOOT

21

Frame Buffer Height

The default is to define the height of the frame buffer as the display’s height minus the
overscan pixels.

framebuffer_height Description

default Display height overscan

framebuffer_height=n Set height to n pixels

Frame Buffer Depth

This parameter defines the number of bits per pixel.

framebuffer_depth Description

8 Valid, but default RGB palette makes an unreadable screen

16 Default

24 Looks better but has corruption issues as of 6/15/2012

32 No corruption, but requires framebuffer_ignore_alpha=1, and
shows wrong colors as of 6/15/2012

Frame Buffer Ignore Alpha

The alpha channel can be disabled with this option. As of this writing, this option must be
used when using a frame buffer depth of 32 bits.

framebuffer_ignore_alpha Description

0 Alpha channel enabled (default)

1 Alpha channel disabled

General Video Options
The display can be flipped or rotated in different ways, according to the display_rotate
option. You should be able to do both a flip and a rotate by adding the flip values to the
rotate value.

CHAPTER 2 ■ BOOT

22

Note ■ I was unable to get the flip options to work on Linux Raspberry Pi 3.2.27+ #250.

It is possible that a newer version of the boot-loader bootcode.bin may be needed. But as

of 2014, this remains an issue.

The 90º and 270º rotations require additional memory on the GPU, so these options
won’t work with a 16 MB GPU split.

display_rotate Description

0 0º (default)

1 90º

2 180º

3 270º

0x1000 Horizontal flip

0x2000 Vertical flip

While the flip options are documented, I was unable to get them to work. The
rotations, however, were confirmed as working.

Licensed Codecs
The following options permit you to configure the purchased license key codes for the
codecs they affect.

Option Notes

decode_MPG2=0x12345678 License key for hardware MPEG-2 decoding

decode_WVC1=0x12345678 License key for hardware VC-1 decoding

Testing
The following test option enables image/sound tests during boot. This is intended for
manufacturer testing.

test_mode Description

0 Disable test mode (default)

1 Enable test mode

CHAPTER 2 ■ BOOT

23

Memory
This section summarizes configuration settings pertaining to memory.

Disable GPU L2 Cache

The disable_l2cache option allows the ARM CPU access to the GPU L2 cache to be
disabled. This needs the corresponding L2 disabled in the kernel.

disable_l2cache Description

0 Enable GPU L2 cache access (default)

1 Disable GPU L2 cache access

GPU Memory (All)

The gpu_mem option allows configuration of the GPU memory for all Raspberry Pi board
revisions (unless gpu_mem_256 or gpu_mem_512 is supplied).

gpu_mem Description

gpu_mem=64 Default is 64 MB

gpu_mem=128 128 MB

GPU Memory (256)

The gpu_mem_256 option allows configuration of the GPU memory for the 256 MB
Raspberry Pi boards. When specified, it overrides the gpu_mem option setting.

gpu_mem_256 Description

unspecified Defined by gpu_mem option

gpu_mem_256=128 128 MB (example)

CHAPTER 2 ■ BOOT

24

GPU Memory (512)

The gpu_mem_512 option configures the GPU memory allocated for the 512 MB Raspberry
Pi boards. When specified, it overrides the gpu_mem option setting.

gpu_mem_512 Description

unspecified Defined by gpu_mem option

gpu_mem_512=128 128 MB (example)

Boot Options
Several options in this section affect the boot process. Many options pertain to the kernel
being started, while others affect file systems and devices.

Disable Command-Line Tags

The disable_commandline_tags option permits the user to prevent start.elf from
filling in ATAGS memory before launching the kernel. This prevents the cmdline.txt file
from being supplied to the kernel at boot time.

disable_commandline_tags Description

0 Enable ATAGS (default)

1 Disable command line in ATAGS

Command Line

The cmdline option allows you to configure the kernel command-line parameters within
the config.txt file, instead of the cmdline.txt file.

cmdline Description

unspecified Command line is taken from cmdline.txt

cmdline=“command” Command line is taken from parameter

CHAPTER 2 ■ BOOT

25

Kernel

By default, start.elf loads the kernel from the file named kernel.img. Specifying the
kernel parameter allows the user to change the file’s name.

kernel Description

unspecified kernel=“kernel.img” (default)

kernel=“plan9.img” kernel=“plan9.img”

Kernel Address

This parameter determines the memory address where the kernel image is loaded into.

kernel_address Description

0x00000000 Default

RAM File System File

The ramfsfile parameter names the file for the RAM FS file, to be used with the kernel.

ramfsfile Description

unspecified No RAM FS file used

ramfsfile=“ramfs.file” File ramfs.file is used

RAM File System Address

The ramfsaddr parameter specifies where the RAM file system image is to be loaded into
memory.

ramfsaddr Description

0x00000000 Default address

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 2 ■ BOOT

26

Init RAM File System

This option is a convenience option, which combines the options ramfsfile and
ramfsaddr.

initramfs Arg 1 Arg 2 Description

initramfs initram.gz 0x00800000 Example

Device Tree Address

The device_tree_address option defines where the device tree address is loaded.

device_tree_address Description

0x00000000 Default

Init UART Baud

The init_uart_baud option allows the user to reconfigure the serial console to use a
baud rate that is different from the default.

init_uart_baud Description

115200 Default baud rate

Init UART Clock

The init_uart_clock parameter permits the user to reconfigure the UART to use a
different clock rate.

init_uart_clock Description

3000000 Default

Init EMMC Clock

The init_emmc_clock parameter allows the user to tweak the EMMC clock, which can
improve the SD card performance.

init_emmc_clock Description

100000000 Default

CHAPTER 2 ■ BOOT

27

Boot Delay

The boot_delay and boot_delay_ms options allow the user to reconfigure the delay used
by start.elf prior to loading the kernel. The actual delay time used is computed from
the following:

D b m= ´ +1000

where

•฀ D is the computed delay in milliseconds.

•฀ b is the boot_delay value.

•฀ m is the boot_delay_ms value.

boot_delay (b) Description

1 Default

The boot_delay_ms augments the boot_delay parameter.

boot_delay_ms (m) Description

0 Default

Avoid Safe Mode

A jumper or switch can be placed between pins P1-05 (GPIO 1) and P1-06 (ground) to
cause start.elf to initiate a safe mode boot. If GPIO 1 is being used for some other I/O
function, the safe mode check should be disabled.

avoid_safe_mode Description

0 Default (check P1-05 for safe mode)

1 Disable safe mode check

Overclocking
According to the Raspberry Pi Configuration Settings file, Revision 14
(http://elinux.org/RPi_config.txt) the ARM CPU, SDRAM, and GPU have their own
clock signals (from a PLL). The GPU core, H.264, V3D, and ISP all share the same clock.

http://elinux.org/RPi_config.txt

CHAPTER 2 ■ BOOT

28

The following commands can be used to check your CPU, once you have a
command-line prompt. The /proc/cpuinfo pseudo file will give you a BogoMIPS figure:

$ cat /proc/cpuinfo
Processor : ARMv6−compatible processor rev 7 (v6l)
BogoMIPS : 697.95
Features : swp half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture : 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7
Hardware : BCM2708
Revision : 000f
Serial : 00000000 f52b69e9
$

The vcgencmd can be used to read the ARM CPU clock frequency:

$ vcgencmd measure_clock arm
frequency (45)=700074000
$

To configure for overclocking, you start with the phase-locked loop (PLL). The PLL
frequency is computed as follows:

p floor
c

c= æ
è
ç

ö
ø
÷ ()2400

2
2

where

•฀ p is the computed PLL frequency.

•฀ c is the core frequency.

From this, the GPU frequency multiple m is computed from a trial GPU frequency t
as follows:

m
p

t
=

The value m is then rounded to the nearest even integer value, and the final GPU
frequency g is computed as follows:

g
p

m
=

CHAPTER 2 ■ BOOT

29

If we take an example where the core frequency c is 500 MHz, then p is determined
as follows:

p floor=
´

æ
è
ç

ö
ø
÷´ ´

=

2400

2 500
2 500

2000

()

Further, if we are targeting a GPU frequency of 300 MHz, we compute m:

m = =
2000

300
6 666.

The value m is rounded to the nearest even integer:

m =6

The final GPU frequency becomes

g
p

m
= = =

2000

6
333 33.

The example GPU clock is 333.33 MHz.
Table 2-3 lists the standard clock profiles, as provided by the Raspberry Pi

Foundation. Additionally, it is stated that if the SoC reaches temp_limit, the overclock
settings will be disabled. The value of temp_limit is configurable.

Table 2-3. Standard Clock Profiles

Profile ARM CPU Core SDRAM Over Voltage

None 700 MHz 250 MHz 400 MHz 0

Modest 800 MHz 300 MHz 400 MHz 0

Medium 900 MHz 333 MHz 450 MHz 2

High 950 MHz 450 MHz 450 MHz 6

Turbo 1000 MHz 500 MHz 500 MHz 6

Warranty and Overclocking
At one time, overclocking could void your warranty. Also note that Internet forum users
have reported SD card corruption when trying out overclocked configurations (though
several improvements to SD card handling have been made). Be sure to back up your
SD card.

CHAPTER 2 ■ BOOT

30

The following combination of parameters may set a permanent bit in your
SoC chip and void your warranty. While the Raspberry Pi announcement
(www.raspberrypi.org/introducing-turbo-mode-up-to-50-more-performance-for-free/)
speaks of overclocking without voiding the warranty, it is subject to some conditions like
using the cpufreq driver. The following conditions may put your warranty in jeopardy:

•฀ ver_voltage > 0, and at least one of the following:

•฀ force_turbo = 1

•฀ current_limit_override = 0x5A000020

•฀ temp_limit > 85

Force Turbo Mode

The documentation indicates that force_turbo has no effect if other overclocking options
are in effect.

By default, force_turbo is disabled. When disabled, it disables some other
configuration options such as h264_freq. However, enabling force_turbo also enables
h264_freq, v3d_freq, and isp_freq.

force_turbo Description

0 (default) Enables dynamic clocks and voltage for the ARM core, GPU core,
and SDRAM. In this mode, settings for h264_freq, v3d_freq, and
isp_freq are ignored.

1 Disables dynamic clocks and voltage for the ARM core, GPU core,
and SDRAM. Configuration option values h264_freq, v3d_freq, and
isp_freq apply when specified.

Initial Turbo

The initial_turbo option is described in config.txt as “enables turbo mode from boot
for the given value in seconds (up to 60).” This is somewhat confusing.

What is meant is that turbo mode will be enabled after a delay of a configured
number of seconds after boot. By default, if turbo mode is enabled, it is enabled
immediately (after examining config.txt).

http://www.raspberrypi.org/introducing-turbo-mode-up-to-50-more-performance-for-free/

CHAPTER 2 ■ BOOT

31

The initial_turbo option allows the boot process to proceed at normal clock rates
until the process has progressed to a certain point. Some people on Internet forums that
experience SD card corruption from overclocking will suggest the initial_turbo option
as a solution.

initial_turbo Description

0 No timed turbo mode (default)

60 Maximum number of seconds after boot before enabling turbo mode

Temperature Limit

The temp_limit configuration option allows the user to override the default safety limit.
Increasing this value beyond 85ºC voids your warranty.

When the SoC temperature exceeds temp_limit, the clocks and voltages are set to
default values for safer operation.

temp_limit Description

85 Temperature limit in Celsius (default)

> 85 Voids your warranty

ARM CPU Frequency

The parameter arm_freq sets the clock frequency of the ARM CPU in MHz. This option
applies in non-turbo and turbo modes.

arm_freq Description

700 Default ARM CPU frequency, in MHz

> 700 May void warranty—check related conditions

Minimum ARM CPU Frequency

This option can be used when using dynamic clocking of the ARM CPU. This sets the
lowest clock speed for the ARM.

arm_freq_min Description

700 Default ARM CPU frequency in MHz

> 700 May void warranty—check related conditions

CHAPTER 2 ■ BOOT

32

GPU Frequency

The gpu_freq option determines the following other values:

Parameter MHz

core_freq Core frequency

h264_freq H.264 frequency

isp_freq Image sensor pipeline frequency

v3d_freq 3D video block frequency

The gpu_freq parameter has the following default value:

gpu_freq Description

250 Default GPU frequency (MHz)

Core Frequency

The core_freq option allows the user to configure the GPU processor core clock.
This parameter also affects the ARM performance, since it drives the L2 cache.

core_freq Description

250 Default in MHz

Minimum Core Frequency

When dynamic clocking is used, this sets the minimum GPU processor core clock rate.
See also the core_freq option. Like the core_freq option, this parameter affects the ARM
performance, since it drives the L2 cache.

core_freq_min Description

250 Default in MHz

CHAPTER 2 ■ BOOT

33

H.264 Frequency

This parameter configures the frequency of the video block hardware. This parameter
applies when force_turbo mode is enabled.

h264_freq Description

250 Default in MHz

ISP Frequency

This parameter configures the image sensor pipeline clock rate and applies when force_
turbo mode is enabled.

isp_freq Description

250 Default in MHz

V3D Frequency

The v3d_freq configures the 3D block frequency in MHz. This parameter applies when
force_turbo mode is enabled.

v3d_freq Description

250 Default in MHz

SDRAM Frequency

The sdram_freq parameter allows the user to configure frequency of the SDRAM.

sdram_freq Description

400 Default in MHz

CHAPTER 2 ■ BOOT

34

Minimum SDRAM Frequency

When dynamic clocks are used, the sdram_freq_min allows the user to configure a
minimum clock rate in MHz.

sdram_freq_min Description

400 Default in MHz

Avoid PWM PLL

The avoid_pwm_pll configuration parameter allows the user to unlink the core_freq
from the rest of the GPU. A Pi configuration note states, “analog audio should still work,
but from a fractional divider, so lower quality.”

avoid_pwm_pll Description

0 Linked core_freq (default)

1 Unlinked core_freq

Voltage Settings
The configuration parameters in this subsection configure voltages for various parts of
the Raspberry Pi.

Current Limit Override

When supplied, the switched-mode power supply current limit protection is disabled.
This can be helpful with overclocking if you are encountering reboot failures.

current_limit_override Description

Unspecified Default (limit in effect)

0x5A000020 Disables SMPS current limit protection

Over Voltage

The ARM CPU and GPU core voltage can be adjusted through the over_voltage option.
Use the values shown in Table 2-4.

CHAPTER 2 ■ BOOT

35

Table 2-4. Voltage Parameter Values

Parameter Voltage Notes

-16 0.8 V

-15 0.825 V

-14 0.85 V

-13 0.875 V

-12 0.9 V

-11 0.925 V

-10 0.95 V

-9 0.975 V

-8 1.0 V

-7 1.025 V

-6 1.05 V

-5 1.075 V

-4 1.1 V

-3 1.125 V

-2 1.15 V

-1 1.175 V

0 1.2 V Default

1 1.225 V

2 1.25 V

3 1.275 V

4 1.3 V

5 1.325 V

6 1.35 V

7 1.375 V Requires force_turbo=1

8 1.4 V Requires force_turbo=1

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 2 ■ BOOT

36

Over Voltage Minimum

The over_voltage_min option can be used when dynamic clocking is employed, to
prevent the voltage dropping below a specified minimum. Use the values from Table 2-4.

Over Voltage SDRAM

The over_voltage_sdram configuration option is a convenient way to set three options at
once:

•฀ over_voltage_sdram_c: SDRAM controller voltage

•฀ over_voltage_sdram_i: SDRAM I/O voltage adjust

•฀ over_voltage_sdram_p: SDRAM physical voltage adjust

Raspberry Pi documentation says the over_voltage_sdram option “sets over_
voltage_sdram_c, over_voltage_sdram_i, over_voltage_sdram_p together.” Use the
values shown in Table 2-4.

SDRAM Controller Voltage

Use the over_voltage_sdram_c option to set the voltage for the SDRAM controller. Use
the values shown in Table 2-4. See also the over_voltage_sdram option.

SDRAM I/O Voltage

Use the over_voltage_sdram_i option to set the voltage for the SDRAM I/O subsystem.
Use the values shown in Table 2-4. See also the over_voltage_sdram option.

SDRAM Physical Voltage

The over_voltage_sdram_p option adjusts the “physical voltage” for the SDRAM
subsystem. Use the values shown in Table 2-4. See also the over_voltage_sdram option.

cmdline.txt
The cmdline.txt file is used to supply command-line arguments to the kernel. The
Raspbian values supplied in the standard image are broken into multiple lines here for
easier reading (note that the NOOBS distribution may show a different device for the root
file system):

$ cat /boot/cmdline.txt
dwc_otg.lpm_enable=0 \
 console=ttyAMA0,115200 \
 kgdboc=ttyAMA0,115200 \

CHAPTER 2 ■ BOOT

37

 console=tty1 \
 root=/dev/mmcblk0p2 \
 rootfstype=ext4 \
 elevator=deadline \
 rootwait
$

This file is provided as a convenience, since the parameters can be configured in
the config.txt file, using the cmdline="text" option. When the config.txt option is
provided, it supersedes the cmdline.txt file.

Once the Raspbian Linux kernel comes up, you can review the command-line
options used as follows (edited for readability):

$ cat /proc/cmdline
 dma.dmachans=0x7f35 \
 bcm2708_fb.fbwidth=656 \
 bcm2708_fb.fbheight=416 \
 bcm2708.boardrev=0xf \
 bcm2708.serial=0xf52b69e9 \
 smsc95xx.macaddr=B8:27:EB:2B:69:E9 \
 sdhci−bcm2708.emmc_clock_freq=100000000 \
 vc_mem.mem_base=0x1c000000 \
 vc_mem. mem_size=0x20000000 \
 dwc_otg.lpm_enable=0 \
 console=ttyAMA0,115200 \
 kgdboc=ttyAMA0,115200 \
 console=tty1 \
 root=/dev/mmcblk0p2 \
 rootfstype=ext4 \
 elevator=deadline \
 rootwait
$

Additional options can be seen prepended to what was provided in the cmdline.txt
file. Options of the format name.option=values are specific to kernel-loadable modules.
For example, the parameter bcm2708_fb.fbwidth=656 pertains to the module bcm2708_fb.

There are too many Linux kernel parameters to describe here (entire books have
been written on this topic), but some of the most commonly used ones are covered in the
following subsections.

Serial console=
The Linux console parameter specifies to Linux what device to use for a console. For the
Raspberry Pi, this is normally specified as follows:

console=ttyAMA0,115200

CHAPTER 2 ■ BOOT

38

This references the serial device that is made available after boot-up as /dev/ttyAMA0.
The parameter following the device name is the baud rate (115200).

The general form of the serial console option is as follows:

console=ttyDevice,bbbbpnf

The second parameter is the options field:

Zone Description Value Raspbian Notes

bbbb Baud rate 115200 Can be more than four digits

p Parity n No parity

o Odd parity

e Even parity

n Number of bits 7 7 data bits

8 8 data bits

f Flow control r RTS

omitted No RTS

Virtual console=
Linux supports a virtual console, which is also configurable from the console= parameter.
Raspbian Linux specifies the following:

console=tty1

This device is available from /dev/tty1, after the kernel boots up. The tty
parameters used for this virtual console can be listed (edited here for readability):

$ sudo −i
stty −a </dev/tty1
speed 38400 baud ; rows 26; columns 82; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; \
eof = ^D; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = ^Q; stop = ^S ; susp = ^Z; rprnt = ^R; werase = ^W; \
lnext = ^V; flush = ^O; min = 1; time = 0;
−parenb −parodd cs8 hupcl −cstopb cread −clocal −crtscts
−ignbrk brkint −ignpar −parmrk −inpck −istrip −inlcr \
−igncr icrnl ixon −ixoff −iuclc −ixany imaxbel iutf8
opost −o lcuc −ocrnl onlcr −onocr −onlret −ofill −ofdel \
nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok −echonl −noflsh \
−xcase −tostop −echoprt −echoctl echoke
#

CHAPTER 2 ■ BOOT

39

kgdboc=
The kgdboc parameter was named after the idea “kgdb over console.” This allows you to
use a serial console as your primary console as well as use it for kernel debugging. The
primary console, however, need not be a serial console for kgdboc to be used.27

The Raspbian image supplies this:

kgdboc=ttyAMA0,115200

This allows kernel debugging to proceed through serial device /dev/ttyAMA0, which
is the only serial device supported on the Raspberry Pi.

root=
The Linux kernel needs to know what device holds the root file system. The standard
Raspbian image supplies the following:

root=/dev/mmcblk0p2

This points the kernel to the SD card (mmcblk0), partition 2 (non-NOOBS
distribution). See also the rootfstype parameter.

The general form of the root= parameter supports three forms:

•฀ root=MMmm: Boot from major device MM, minor mm (hexadecimal).

•฀ root=/dev/nfs: Boot a NFS disk specified by nfsroot (see also
nfs-root= and ip=).

•฀ root=/dev/name: Boot from a device named /dev/name.

rootfstype=
In addition to specifying the device holding the root file system, the Linux kernel
sometimes needs to know the file system type. This is configured through the rootfstype
parameter. The standard Raspbian image supplies the following:

rootfstype=ext4

This example indicates that the root file system is the ext4 type.
The Linux kernel can examine the device given in the root parameter to determine the

file system type. But there are scenarios where the kernel cannot resolve the type or gets
confused. Otherwise, you may want to force a certain file system type. Another situation is
when MTD is used for the root file system. For example, when using JFFS2, it must specified.

elevator=
This option selects the I/O scheduler scheme to be used within the kernel. The standard
Raspbian image specifies the following:

elevator=deadline

CHAPTER 2 ■ BOOT

40

To find out the I/O scheduler option being used and the other available choices (in
your kernel), we can consult the /sys pseudo file system:

$ cat /sys/block/mmcblk0/queue/scheduler
noop [deadline] cfq
$

The name mmcblk0 is the name of the device that your root file system is on. The
output shows in square brackets that the deadline I/O scheduler is being used. The other
choices are noop and cfq. These I/O schedulers are as follows:

Name Description Notes

noop No special ordering of requests

cfq Completely fair scheduler Older

deadline Cyclic scheduler, but requests have deadlines Newest

The deadline I/O scheduler is the newest implementation, designed for greater
efficiency and fairness. The deadline scheduler uses a cyclic elevator, except that it
additionally logs a deadline for the request. A cyclic elevator is one where the requests are
ordered according to sector numbers and head movement (forward and backward). The
deadline scheduler will use the cyclic elevator behavior, but if it looks like the request is
about to expire, it is given immediate priority.

rootwait=
This option is used when the device used for the root file system is a device that is started
asynchronously with other kernel boot functions. This is usually needed for USB and
MMC devices, which may take extra time to initialize. The rootwait option forces the
kernel to wait until the root device becomes ready.

Given that the root file system is on the SD card (a MMC device), the Raspbian image
uses the following:

rootwait

nfsroot=
The nfsroot option permits you to define a kernel that boots from an NFS mount
(assuming that NFS support is compiled into the kernel). The square brackets show
placement of optional values:

nfsroot=[server−ip:]root−dir[,nfs−options]

CHAPTER 2 ■ BOOT

41

Field Description

server-ip NFS server IP number (default uses ip=)

root-dir Root dir on NFS server. If there is a %s present, the IP address will be
inserted there.

nfs-options NFS options like ro, separated by commas

When unspecified, the default of /tftpboot/client_ip_address will be used. This
requires that root=/dev/nfs be specified and optionally ip= may be added.

To test whether you have NFS support in your kernel, you can query the /proc file
system when the system has booted:

$ cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev cgroup
nodev tmpfs
nodev devtmpfs
nodev debugfs
nodev sockfs
nodev pipefs
nodev anon_inodefs
nodev rpc_pipefs
nodev configfs
nodev devpts
 ext3
 ext2
 ext4
nodev ramfs
 vfat
 msdos
nodev nfs
nodev nfs4
nodev autofs
nodev mqueue

From this example, we see that both the older NFS (nfs) and the newer NFS4 file
systems are supported.

CHAPTER 2 ■ BOOT

42

ip=
This option permits the user to configure the IP address of a network device, or to specify
how the IP number is assigned. See also the root= and nfsroot= options.

ip=client−ip:server−ip:gw−ip:netmask:hostname:device:autoconf

Table 2-5 describes the fields within this option. The autoconf value can appear by
itself, without the intervening colons if required. When ip=off or ip=none is given, no
autoconfiguration takes place. The autoconfiguration protocols are listed in Table 2-6.

Table 2-5. ip= Kernel Parameter

Field Description Default

ip-client IP address of the client Autoconfigured

ip-server IP address of NFS server, required only for
NFS root

Autoconfigured

gw-ip IP address of server if on a separate subnet Autoconfigured

netmask Netmask for local IP address Autoconfigured

hostname Hostname to provide to DHCP Client IP address

device Name of interface to use When more than one is
available, autoconf

autoconf Autoconfiguration method Any

Table 2-6. Autoconfiguration Protocols

Protocol Description

off or none Don’t autoconfigure

on or any Use any protocol available (default)

dhcp Use DHCP

bootp Use BOOTP

rarp Use RARP

both Use BOOTP or RARP but not DHCP

CHAPTER 2 ■ BOOT

43

Emergency Kernel
In the event that your Raspberry Pi does not boot up properly, an emergency kernel is
provided in /boot as file kernel_emergency.img. This kernel includes a BusyBox root
file system to provide recovery tools. Through use of e2fsck, you’ll be able to repair your
normal Linux root file system. If necessary, you’ll be able to mount that file system and
make changes with the BusyBox tools.

To activate the emergency kernel, mount your SD card in a Linux, Mac, or Windows
computer. Your computer should see the FAT32 partition, allowing you to rename files
and edit configurations. Rename your current kernel.img to something like kernel.bak
(you likely want to restore this kernel image later). Then rename kernel_emergency.img
as kernel.img.

If you have used special configuration options in config.txt and cmdline.txt,
you should copy these to config.bak and cmdline.bak, respectively. Then remove
any special options that might have caused trouble (especially overclocking options).
Alternatively, you can restore original copies of these two files, as provided by the
standard Raspbian image download.

Note ■ Your FAT32 partition (/boot) probably has about 40 MB of free disk space (for a

standard Raspbian disk image). Renaming large files, rather than copying them, saves disk

space. Consequently, renaming kernel images is preferred over copying. Small files like

config.txt or cmdline.txt can be copied as required.

The entire procedure is summarized here:

1. Rename kernel.img to kernel.bak (retain the normal kernel).

2. Rename kernel_emergency.img to kernel.img.

3. Copy config.txt to config.bak.

4. Copy cmdline.txt to cmdline.bak.

5. Edit or restore config.txt and cmdline.txt to original or safe
configurations.

Step 5 requires your own judgment. If you have customized hardware, there may be
some nonstandard configuration settings that you need to keep (see the previous “Avoid
Safe Mode” section). The idea is to simply give your emergency kernel as much chance
for success as possible. Disabling all overclocking options is also recommended.

CHAPTER 2 ■ BOOT

44

Caution ■ After changes, make sure you properly unmount the SD card media (Linux/Mac)

or “safely remove USB device” in Windows. Pulling the SD card out before all of the disk

data has been written will corrupt your FAT32 partition, adding to your troubles. This may

even cause loss of files.

With the kernel exchanged and the configuration restored to safe options, it should
now be possible to boot the emergency kernel. Log in and rescue.

To restore your system back to its normal state, you’ll need to follow these steps:

1. Rename kernel.img to kernel_emergency.img (for future rescues).

2. Rename kernel.bak to kernel.img (reinstate your normal kernel).

3. Restore/alter your config.txt configuration, if necessary.

4. Restore/alter your cmdline.txt configuration, if necessary.

At this point, you can reboot with your original kernel and configuration.

45

CHAPTER 3

Initialization

After the Linux kernel is booted, the first executing userland process ID number (PID)
is 1. This process, known as init, is initially responsible for spawning all other required
processes required by the system. The init process continues to execute after the system
is up, running as a daemon (in the background). It should never be terminated by the
user (when attempted on Raspbian Linux, the kill request was ignored).

Run Levels
The init process maintains a concept of a run level for the system. The current run level
can be checked at the command line:

$ runlevel
N 2
$

The N shown here is the previous run level that was in effect. This N means that there
was no prior run level. The 2 shown at the right is the current run-level number.

Raspbian Linux supports the run levels shown in Table 3-1. According to the action
defined in Raspbian Linux’s /etc/inittab file, it changes to run level 2 by default (see
the /etc/inittab line with the initdefault action, which is described later). If problems
are encountered, such as a corrupted root file system, the run level is taken to single-
user mode (1). This allows the user at the console to repair the problem and resume the
transition to a multiuser run level (normally 2) afterward.

Table 3-1. Raspbian Run Levels

Run Level Meaning Notes

S or s Used at initial boot Reserved

0 Halt Reserved

1 Single-user mode Reserved

2 Multiuser mode Default

3 Multiuser mode

(continued)

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 3 ■ INITIALIZATION

46

/etc/inittab
Once the init process has begun and performed its own initialization, it starts reading
from configuration file /etc/inittab. This small file has a simple format composed of
four fields, separated by colons:

id:runlevels:action:process

Lines beginning with a # are ignored as comments. Table 3-2 describes the four fields.

Table 3-2. /etc/inittab Fields

Field Name Description

1 id A unique 1- to 4-character name for the entry

2 runlevel(s) Lists the run levels for which the specified action
should be performed

3 action Describes the action required

4 process Command-line text for the process

Run Level Meaning Notes

4 Multiuser mode

5 Multiuser mode

6 Initiate reboot Reserved

7 Undocumented See man 8 init

8 Undocumented

9 Undocumented

Table 3-1. (continued)

inittab Action initdefault
The /etc/inittab file should have one (and only one) entry, with an action named
initdefault. This identifies what the initial run level should be after booting. The run
level value is taken from the runlevels field of this entry. The Raspbian Linux image uses
the following:

The default runlevel .
id:2:initdefault:

CHAPTER 3 ■ INITIALIZATION

47

This specifies that run level 2 is entered after the Linux kernel has booted.
The name in the id field is not important here and simply must be unique within
the file. The process field is also ignored for this entry. If the /etc/inittab file lacks the
initdefault entry, init will ask for a run level from the console.

Field 3 of the inittab line specifies an action. The possible action choices are
described in Table 3-3.

Table 3-3. init Actions

Action Description Notes

respawn Restart whenever process terminates.

wait The process is started once when the run level is
entered, and init will wait for its termination.

once Process is started when run level is entered.

boot Executed during system boot. Ignores run levels,
after sysinit entries

bootwait Executed during system boot, but waits for the
process to complete.

Ignores run levels,
after sysinit entries

off This does nothing (treat as a comment).

ondemand Execute upon demand: a, b, or c. No run-level
change

initdefault Specifies the initial run level to use.

sysinit Execute during system boot. Prior to boot/
bootwait

Ignores run levels

powerwait Execute process when power goes down. Waits for
termination

powerfail Execute process when power goes down. Does not wait

powerokwait Execute process when power restored.

powerfailnow Execute process when UPS signals near
exhaustion of battery.

ctrlaltdel Execute process when init sees SIGINT. SIGINT triggered
by Ctrl-Alt-Delete.

kbrequest Execute process after special key press.

CHAPTER 3 ■ INITIALIZATION

48

General Startup Sequence
Ignoring special events like power on demand and keyboard events, the general
/etc/inittab processing follows this sequence:

1. /etc/inittab is searched for the initdefault action.

2. The user is prompted at the console for a run level, if none is
found in /etc/inittab or the file is missing.

3. The init process sets the run level.

4. The sysinit entries are performed.

5. The boot and bootwait entries are performed.

6. All other entries that include the established run level are
performed.

Step 4: sysinit

The standard Raspbian image uses the following for step 4:

Boot−time system configuration/initialization script.
This is run first except when booting in emergency (−b) mode.
si::sysinit:/etc/init.d/rcS

The preceding sysinit entry specifies that script /etc/init.d/rcS is to be run.
This is a simple script that redirects the execution to yet another script:

#!/bin/sh
#
rcS
#
Call all S??∗ scripts in /etc/rcS.d/ in numerical/alphabetical order
#

exec /etc/init.d/rc S

From this we see that execution continues with /etc/init.d/rc with argument
1 set to S. This script is responsible for starting and stopping services on run-level
changes. This particular inittab entry is used at initial boot-up and is used to invoke all
startup scripts in /etc/rcS.d/S*.

Each of the /etc/rcS.d/S* scripts get invoked with one argument, start. Normally,
the script would invoke /etc/rcS.d/K* scripts first (kill scripts that we will discuss later),
but upon initial boot, there is no prior run level.

Step 5: boot/bootwait

Under Raspbian Linux, there are no boot or bootwait entries to perform.

CHAPTER 3 ■ INITIALIZATION

49

Step 6: runlevel

The last step of the initialization involves changing from the non-run-level N to the run
level 2, which was declared by the initdefault entry. The Raspbian inittab declares
that the /etc/init.d/rc script is run with a run-level argument for each of these run-
level changes:

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6

The first part of starting a new run level is to run the stop (kill) scripts at the new run
level, provided that there was a previous run level. At boot time, there is no current level
(it is N). So at startup, these scripts are ignored.

If, however, the system had been in single-user mode (for example) and the system
was changed to run level 2, these kill scripts would be invoked:

$ ls −lL /etc/rc2.d/K∗
−rwxr−xr−x 1 root root 2610 Jul 25 2011 /etc/rc2.d/K01lightdm
−rwxr−xr−x 1 root root 6491 Jul 21 2012 /etc/rc2.d/K05nfs−common
−rwxr−xr−x 1 root root 2344 Jun 15 2012 /etc/rc2.d/K05rpcbind

The script /etc/init.d/rc first iterates through these kill scripts (in sort order).
When the current level has a stop (kill) script, the following logic applies:

1. If the previous run level did have a matching stop (kill)
script, and

2. If the previous level didn’t have a start script,

3. Then there is no need to execute the stop (kill) script.

Otherwise, the corresponding kill script is necessary and is performed.
At startup, or after a run-level change, the startup scripts for the new run level (2 in

this example) are performed. When the current level has a start script, then the following
logic applies:

1. If the previous run level also has a matching start script, and

2. The current level doesn’t have a stop (kill) script,

3. Then there is no need to stop and restart the script.

Otherwise, the start script is invoked.

CHAPTER 3 ■ INITIALIZATION

50

For all run levels except 0 and 6, the action being performed by the /etc/init.d/rc
script is to start services (except where kill scripts apply). Entering run level 0 (halt) or 6
(reboot) is a bit different, since the script must be stopping services.

The following is an example list of startup scripts used by the Raspberry Pi when
entering run level 2 after booting:

$ ls −lL /etc/rc2.d/S∗
−rwxr−xr−x 1 root root 1276 Aug 31 2012 /etc/rc2.d/S01bootlogs
−rwxr−xr−x 1 root root 4698 May 1 2012 /etc/rc2.d/S01ifplugd
−rwxr−xr−x 1 root root 995 Aug 31 2012 /etc/rc2.d/S01motd
−rwxr−xr−x 1 root root 3054 Sep 26 2012 /etc/rc2.d/S01rsyslog
−rwxr−xr−x 1 root root 714 Jun 28 2012 /etc/rc2.d/S01sudo
−rwxr−xr−x 1 root root 3169 May 10 2011 /etc/rc2.d/S01triggerhappy
−rwxr−xr−x 1 root root 3033 Jul 9 2012 /etc/rc2.d/S02cron
−rwxr−xr−x 1 root root 2832 Sep 29 2012 /etc/rc2.d/S02dbus
−rwxr−xr−x 1 root root 2148 Jun 9 2012 /etc/rc2.d/S02dphys−swapfile
−rwxr−xr−x 1 root root 1814 Dec 26 2009 /etc/rc2.d/S02ntp
−rwxr−xr−x 1 root root 4395 Dec 13 06:43 /etc/rc2.d/S02rsync
−rwxr−xr−x 1 root root 3881 Feb 24 2012 /etc/rc2.d/S02ssh
−rwxr−xr−x 1 root root 1313 Jun 30 2012 /etc/rc2.d/S04plymouth
−rwxr−xr−x 1 root root 782 Mar 16 2012 /etc/rc2.d/S04rc.local
−rwxr−xr−x 1 root root 1074 Mar 16 2012 /etc/rc2.d/S04rmnologin

Like many Linux distributions, Raspbian Linux places the actual script files in the
directory /etc/init.d. The names found in /etc/rc2.d, for example, are symlinks to the
actual files.

It should also be noted that these scripts are run in the order determined by the pair
of digits following the S or K prefix. This is a natural consequence of the way the shell sorts
file names when listing files.

inittab Action wait
The wait init action is useful for entries that you want to run individually when the new
run level is first entered. The init process will not resume with further entries until the
launched process has terminated (whether launched successfully or not). Presumably,
there is an implied order based on line sequence found in the file. An important attribute
of this type of entry is that it is performed only once upon starting the run level.

inittab Action once
The once action is very similar to the wait action, except that the init process will not
wait for the started process to terminate (perhaps it doesn’t). Entries marked once are
started only once per entry of a given run level, but init then proceeds with immediately
processing other entries.

CHAPTER 3 ■ INITIALIZATION

51

inittab Action respawn
The respawn option is often used for processes that manage terminal lines (gettys).
The following example is taken from the standard Raspbian /etc/inittab:

Spawn a getty on Raspberry Pi serial line
T0:23:respawn:/sbin/getty −L ttyAMA0 115200 vt100

This entry is used whenever init enters run levels 2 or 3. It launches program
/sbin/getty to prompt the user for login on the serial console device (/dev/ttyAMA0 in
this example). Other command-line parameters help the getty program to configure the
terminal and login environment. When the user logs out of his session, the getty process
terminates. When init notices that the process has terminated, it starts /sbin/getty
again because of the respawn action. In this way, the terminal line is readied for the next
user login.

Caution ■ When using the respawn action for your own application, be careful that it

doesn’t fail frequently. Otherwise, init will churn by repeatedly restarting your process after

it fails. You may eventually get a message on the console with init temporarily suspending

the entry. This reduces the hogging of system resources from frequent respawning. But this

suspension is temporary.

Changing Run Levels
The preceding sections outlined the startup procedure. Let’s now examine what happens
when you change run levels.

telinit
The /sbin/telinit executable is linked to the init program file /sbin/init. This form
of the command is used to inform the executing init process to request a change of run
levels:

telinit x

where x is the new run level to enter. The run level may be specified only as one of the
choices described in Table 3-4.

CHAPTER 3 ■ INITIALIZATION

52

Any unrecognized level is silently ignored.

Change of Run Level
Let’s use an example to keep the references concrete. If you were in run level 1 and
directed the system to change to run level 2 with

telinit 2

the following happens:

1. /etc/init.d/rc executes all K* (kill) scripts for run level 2
(the level you are changing to), with an argument of stop.

2. /etc/init.d/rc executes all S* (start) scripts for run level 2,
with the argument start.

3. Except where previously noted (redundant stop and start
script executions are omitted)

Another way to think about this is that all K* symlinks at a particular run level
identify services that should not be running at that level. Similarly, the S* symlinks
identify services that should be running at that level.

Single-User Mode
Changing to single-user mode works the same as for any other level, except that most of
the scripts are designed to be kill scripts to stop services (/etc/rc1.d/K*), rather than to
start them.

The concept of single-user mode is that only one user will be using the system,
without unnecessary services running in the background. This run level is normally used
to repair the file systems or to reconfigure the system.

Table 3-4. telinit Run Levels

Level Description

0-6 Run level 0, 1, 2, 3, 4, 5, or 6

a, b, c Invoke inittab entries with a, b, or c

Q or q Tell init to reexamine /etc/inittab

S or s Change to single-user mode

U or u Tell init to reexecute itself

CHAPTER 3 ■ INITIALIZATION

53

Halt and Reboot
Changing to level 0 (halt) or 6 (reboot) requires stopping all services. As a result, in this
case only the kill scripts are performed with the argument stop. In the file

/usr/share/doc/sysv-rc/README.runlevels

you will find this remark:

In the future, the /etc/rc6.d/SXXxxxx scripts MIGHT be moved to /etc/rc6.d/
K1XXxxxx for clarity.”

Creating a New Service
If you had a dedicated application for your Raspberry Pi, you might want to assign it to
a dedicated run level, perhaps 4. In this manner, you could still perform maintenance
and perhaps even development in run level 2. When it was time to start the dedicated
application, you’d use telinit to change to run level 4. You could even have
/etc/inittab cause a reboot directly into level 4, by the following entry:

id:4:initdefault:

Rebooting directly to your custom run level 4 would be useful for solar applications
to handle restarts due to power fluctuations.

To arrange the startup/kill scripts, you would need the following:

1. Kill scripts at the following locations (symlinks to
/etc/init.d/service). These apply when you change from
level 4 to one of the other levels, where you don’t want the
service running.

a. /etc/rc2.d/KXXservice

b. /etc/rc3.d/KXXservice

c. /etc/rc5.d/KXXservice

d. Note that single-user mode by default will not have other
services left running.

2. You will need a startup script for run level 4:

a. /etc/rc4.d/SXXservice

In the preceding script, XX is a sequence number (00 to 99) that positions where in
the list of scripts it gets executed.

Also note that the symlinks

•฀ /etc/rc2.d/KXXservice

•฀ /etc/rc2.d/SXXservice

CHAPTER 3 ■ INITIALIZATION

54

point to the same file in /etc/init.d/service. The K* symlinks are invoked with the
argument stop, while the S* symlinks are invoked with start. This means that your
single /etc/init.d/service script file should stop or start based on this command-line
argument.

The advantage of running your dedicated application from its own run level includes
the following:

Less competition for CPU resources from unused daemons•฀

Increased security by not running services that permit external •฀
login attempts

Restricted physical access—login only via the serial port console •฀
(when configured)

Automatic restart of your application after a power failure•฀

With run levels 3, 4, and 5 to work with, you can configure a mix of different
dedicated application profiles.

55

CHAPTER 4

vcgencmd

Apart from the usual Linux commands that display status, the Raspberry Pi includes a
custom command named vcgencmd, which can report voltages and temperatures. This
chapter documents the known features of the command.

The executable file behind the command is /usr/bin/vcgencmd.

vcgencmd Commands
There is no man page for this command, but the list of all supported options can be
displayed with the commands option. The command output has been broken over several
lines for readability:

$ vcgencmd commands
commands="vcos, ap_output_control, ap_output_post_processing, \
pm_set_policy, pm_get_status, pm_show_stats, pm_start_logging, \
pm_stop_logging, version, commands, set_vll_dir, \
led_control, set_backlight, set_logging, get_lcd_info, \
set_bus_arbiter_mode, cache_flush, otp_dump, codec_enabled, \
measure_clock, measure_volts, measure_temp, get_config, \
hdmi_ntsc_freqs, render_bar, disk_notify, inuse_notify, \
sus_suspend, sus_status, sus_is_enabled, \
sus_stop_test_thread, egl_platform_switch, mem_validate, \
mem_oom, mem_reloc_stats, file, vctest_memmap, vctest_start, \
vctest_stop, vctest_set, vctest_get"

At the time of this writing, some of these options remained undocumented.
A summary list of options is itemized in Table 4-1.

www.itbookshub.com

http://www.allitebooks.org

CHAPTER 4 ■ VCGENCMD

56

Table 4-1. Summary of vcgencmd Command-Line Options

Option Name Argument(s) Description

ap_output_control

ap_output_post_processing

cache_flush Flushes GPU’s L1 cache

codec_enabled codec Reports status of codec

commands Lists options

disk_notify

egl_platform_switch

file

get_config

get_lcd_info Returns height, width, and depth of
the display frame buffer

hdmi_ntsc_freqs

inuse_notify

led_control

measure_clock clock Reports frequency

measure_temp Reports SoC temperature

measure_volts device Reports voltage

mem_oom Reports Out of Memory events

mem_reloc_stats Reports relocatable memory stats

mem_validate

otp_dump

pm_get_status

pm_set_policy

pm_show_stats

pm_start_logging

pm_stop_logging

render_bar

set_backlight

set_bus_arbiter_mode

set_logging

CHAPTER 4 ■ VCGENCMD

57

Table 4-2. Valid Arguments for the measure_clock Option

Clock Description

arm ARM CPU

core Core

dpi Display Pixel Interface

emmc External MMC device

h264 h.264 encoder

hdmi HDMI clock

isp Image Sensor Pipeline

pixel Pixel clock

pwm Pulse Width Modulation

uart UART clock

v3d Video 3D

vec

Option measure_clock
This firmware access option provides the user with clock rate information, according
to the argument appearing after measure_clock. Valid values for <clock> are listed in
Table 4-2.

vcgencmd measure_clock <clock>

The following shell script is often used to list all available clocks:

$ for src in arm core h264 isp v3d uart pwm emmc pixel vec hdmi dpi ; do
 echo −e "$src : $(vcgencmd measure_clock $src)" ;
done

Here is the example output:

arm : frequency (45)=700074000
core : frequency (1)=250000000
h264 : frequency (28)=250000000
isp : frequency (42)=250000000
v3d : frequency (43)=250000000
uart : frequency (22)=3000000
pwm : frequency (25)=0
emmc : frequency (47)=100000000

CHAPTER 4 ■ VCGENCMD

58

pixel : frequency (29)=108000000
vec : frequency (10)=0
hdmi : frequency (9)=163683000
dpi : frequency (4)=0

Option measure_volts
The measure_volts option allows the various subsystem voltages to be reported:

$ for id in core sdram_c sdram_i sdram_p ; do
 echo −e "$id: $(vcgencmd measure_volts $id)" ;
done
core : volt=1.20V
sdram_c: volt=1.20V
sdram_i: volt=1.20V
sdram_p: volt=1.23V

Table 4-3 provides a legend for the output report lines.

Table 4-3. Valid Device Names for measure_volts

Device Description

core Core

sdram_c SDRAM controller

sdram_i SDRAM I/O

sdram_p SDRAM physical

Option measure_temp
The measure_temp option allows the user to retrieve the SoC temperature, in degrees
Celsius.

$ vcgencmd measure_temp
temp=36.3 °C

In this example, the relatively idle core was reported to be 36.3°C.

CHAPTER 4 ■ VCGENCMD

59

Option codec_enabled
The codec_enabled option reports the operational status of the codecs supported by
the Raspberry Pi. Valid codec names are listed in Table 4-4. The codec support can be
summarized with the following command:

$ for id in H264 MPG2WCV1 ; do
 echo −e "$id: $(vcgencmd codec_enabled $id)";
done
H264: H264=enabled
MPG2: MPG2=disabled
WCV1: WCV1=disabled

Table 4-4. vcgencmd CODEC Names

Name Description

H264 h.264 CODEC

MPG2 MPEG-2 CODEC

WVC1 VC1 CODEC

Option version
The version option reports the GPU firmware version:

$ vcgencmd version
Oct 25 2012 16:37:21
Copyright (c) 2012 Broadcom
version 346337 (release)

Option get_lcd_info
While get_lcd_info was undocumented at the time of this writing, it appears to provide
LCD/monitor width and height, and pixel depth:

$ vcgencmd get_lcd_info
720 480 24

CHAPTER 4 ■ VCGENCMD

60

Option get_config
The get_config option is useful in scripts that need to query your Raspberry Pi’s
configuration, as defined in /boot/config.txt. See Chapter 2 for the options that can be
queried. For example, a script can query whether avoid_safe_mode is in effect:

$ vcgencmd get_config avoid_safe_mode
avoid_safe_mode=0

61

CHAPTER 5

Linux Console

The Raspbian Linux console is configured (or assumed) by the kernel command line. See
the console option described in Chapter 2.

Available Consoles
The list of consoles is available through the /proc/consoles pseudo file:

$ cat /proc/consoles
tty1 −WU (EC p) 4:1
ttyAMA0 −W− (E p) 204:64

The organization and flags displayed are described in Tables 5-1 and 5-2. The major
and minor numbers are confirmed in the following example session output:

$ ls −l /dev/tty1 /dev/ttyAMA0
crw−rw−−−− 1 root tty 4, 1 Jan 21 00:06 /dev/tty1
crw−rw−−−− 1 root tty 204, 64 Jan 21 00:06 /dev/ttyAMA0

Table 5-1. /proc/consoles Fields

Field Parameter Example Description

1 device tty1 /dev/tty1

2 operations -WU- R = read

W = write

U = unblank

3 flags (EC p) See flags in Table 5-2

4 major:minor 4:1 Device major/minor

CHAPTER 5 ■ LINUX CONSOLE

62

Serial Console
If you wired up a serial console to your Raspberry Pi, you can use a utility such as PuTTY
(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html) on your
laptop or desktop computer to connect to it. The serial console sees the following first few
lines at boot (long lines are edited):

Uncompressing Linux… done, booting the kernel.
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 3.2.27+ (dc4@dc4–arm–01) \
 (gcc version 4.7.2 20120731 (prerelease) \
 (crosstool –NG linaro –1.13.1+bzr2458 – Linaro GCC 2012.08)) \
 #250 PREEMPT Thu Oct 18 19:03:02 BST 2012
[0.000000] CPU: ARMv6–compatible processor [410fb767] \
 revision 7 (ARMv7), cr=00c5387d
[0.000000] CPU : PIPT /VIPT nonaliasing data cache, \
 VIPT nonaliasing instruction cache
[0.000000] Machine: BCM2708

Using the dmesg command, you can see almost the same thing:

$ dmesg | head −5
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 3.2.27+ (dc4@dc4−arm−01) \
 (gcc version 4.7.2 20120731 (prerelease) \
 (crosstool −NG linaro −1.13.1+bzr2458 − Linaro GCC 2012.08)) \
 #250 PREEMPT Thu Oct 18 19:03:02 BST 2012
[0.000000] CPU: ARMv6−compatible processor [410fb767] \
 revision 7 (ARMv7), cr=00c5387d
[0.000000] CPU:PIPT/VIPT nonaliasing data cache, \
 VIPT nonaliasing instruction cache
[0.000000] Machine:BCM2708

The difference is that the initial Uncompressing Linux console output is missing.
Additionally, any debug messages that a new kernel might display can be capturable on a
serial console.

Table 5-2. The Meaning of Flags Displayed in Parentheses

Flag Meaning

E The console is enabled.

C Is the preferred console.

B Primary boot console.

p Used for printk buffer.

b Not a TTY, but is a Braille device.

a Safe to use when CPU is offline.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

63

CHAPTER 6

Cross-Compiling

Embedded computers often lack the necessary resources for developing and compiling
software. The Raspberry Pi is rather special in this regard since it already includes the
gcc compiler and the needed linking tools (under Raspbian Linux). But while the code
can be developed and built on the Raspberry Pi, it may not always be the most suitable
place for software development. One reason is the lower performance of the SD card.

To compile native code for the Raspberry Pi, you need a compiler and linker that
knows how to generate ARM binary executables. Yet it must run on a host with a different
architecture (for example, Mac OS X). Hence the reason it is called a cross-compiler. The
cross-compiler will take your source code on the local (build) platform and generate ARM
binary executables, to be installed on your target Pi.

There are prebuilt cross-compile tools available, including the Raspberry Pi
Foundation’s own tools (git://github.com/raspberrypi/tools.git), but these can
be problematic for some versions of Linux. Running the cross-compiler on a different
Linux release than it was built for may cause the software to complain about missing or
incompatible shared libraries. But if you find that you can use a prebuilt release, it will
save considerable time.

In this chapter, you’ll walk through how to build your own cross-compiler. This may
permit you to get the job done using your existing Linux release.

Terminology
Let’s first cover some terminology used in this chapter:

build: Also called the local platform, this is the platform that
you perform the compiling on (for example, Mac OS X).

target: The destination platform, which is the Raspberry Pi
(ARM) in this chapter.

Let’s now consider some of the cross-compiling issues before you take the plunge.
There are two main problem areas in cross-compiling:

All C/C++ include files and libraries for the Raspberry Pi (ARM) •฀
must be available on your build platform.

The cross-compiler and related tools must generate code suitable •฀
for the target platform.

CHAPTER 6 ■ CROSS-COMPILING

64

So before you decide that you want to build a cross-compiler environment, are you
prepared to

Provide all matching C/C++ header files from the ARM platform?•฀

Provide all ARM libraries needed, including libraries for •฀
third-party products like sqlite3 that you intend to link with?

Provide sufficient disk space for the cross-compiler and tools?•฀

The crosstool-NG software will mitigate some of these issues. For example, the
correct Linux headers are chosen by the configuration step shown later in this chapter.

Disk space solves many issues by holding a copy of your Raspberry Pi’s root file
system on your build platform. Simple programs won’t require this (for example, a Hello
World). But software linking to libraries may require this. Even if you’re strapped for
disk space, you may be able to mount the Raspbian SD card on the build platform, thus
gaining access to the Raspberry Pi’s root file system.

Operating System
The procedure used for building a cross-compiler environment is somewhat complex
and fragile. Using the crosstool-NG software simplifies things considerably. Despite this
advantage, it is best to stick with proven cross-compiler platforms and configurations.

You might be tempted to say, “The source code is open, and so it should work on
just about any operating system.” (You might even say, “I’ll fix the problems myself.”)
The reality is not quite so simple. I use the Mac Ports collection (www.macports.org) for
a number of things and quickly discovered the limitations of building a crosstool-NG
on Mac OS X. For example, I found that objcopy was not supported when ./configure
was run for the cross-compiler. Unless you are willing to spend time on Internet forums
and wait for answers, I suggest you take a more pragmatic approach—build your cross-
compiling environment on a recent and stable Ubuntu or Debian environment.

This chapter uses Ubuntu 14.04 LTS hosted in VirtualBox 4.3.12 (www.virtualbox.org)
on a Mac OS X Mavericks MacBook Pro, running an Intel i7 processor. Current versions of
Ubuntu are recommended. Ubuntu 12.10 was the version tested and used by the process
documented at this link:

www.kitware.com/blog/home/post/426

Host, Guest, Build, and Target
At this point, a short note is in order because these terms can get confusing, especially
for those performing this for the first time. Let’s list the environment terms, which will be
referred to throughout the remainder of this chapter:

•฀ Host environment

•฀ Guest environment

•฀ Build/local environment

•฀ Target environment

http://www.macports.org/
http://www.virtualbox.org/
http://www.kitware.com/blog/home/post/426

CHAPTER 6 ■ CROSS-COMPILING

65

So many environments! The terms host and guest environments enter the picture when
you are using a virtual machine like VirtualBox. VirtualBox is used to host” another operating
system on top of the one you are using. For example, you might be running Mac OS X on
your laptop. In this example, the OS X environment hosts Ubuntu Linux within VirtualBox.
The Ubuntu Linux operating system is thus referred to as the guest operating system.

The term build (or local) environment refers to the Linux environment that is
executing the cross-compiler and tools. These Linux tools produce or manipulate code
for the target environment (your Raspberry Pi’s ARM CPU).

Platform Limitations
Many people today are using 64-bit platforms similar to my own MacBook Pro, with an
Intel i7 processor. This may present a problem if you want to build a cross-compiler for
the Raspberry Pi, which is a 32-bit platform. Many people building a cross-compiler on a
64-bit platform have encountered software problems building for a 32-bit platform.

For this reason, if you are using a 64-bit platform, you’ll probably want to choose
a VirtualBox solution. This will allow you to run a 32-bit operating system to host the
cross-compiler. On the other hand, if you are already running a 32-bit operating system,
creating a native cross-compiler for the Pi is a real possibility.

Without VirtualBox (Native)
If you are already using a Linux development environment like Debian or Ubuntu,
the term host is equivalent to the build (or local) environment. The host and guest
environments are likewise equivalent, though it is probably more correct to say there is
no guest operating system in this scenario. This simpler scenario leaves us with just two
environments:

Host/guest/build: Native environment running the cross-
compiler tools

Target: The destination execution environment (Raspberry Pi)

Using VirtualBox (Ubuntu/Linux)
If you do not have a suitable Linux environment, one can be hosted on the platform you
have. You can host Linux from Windows, Mac OS X, Solaris, or another distribution of
Linux. VirtualBox can be downloaded from the following:

www.virtualbox.org

www.itbookshub.com

http://www.virtualbox.org/
http://www.allitebooks.org

CHAPTER 6 ■ CROSS-COMPILING

66

When VirtualBox is used, the host environment is the environment that is running
VirtualBox (for example, Mac OS X). The guest operating system will be Ubuntu
(recommended) or Debian. This leaves us with three environments in total:

Host: Or native, running VirtualBox (for example, Windows)

Guest/build: Ubuntu/Debian development environment
within VirtualBox

Target: The destination execution environment (your
Raspberry Pi)

Planning Your Cross-Development Environment
The main consideration at this point is normally disk space. If you are using VirtualBox,
limited memory can be another factor. If you are using Linux or Mac OS X, check your
mounted disks for available space (or Windows tools as appropriate):

$ df −k
Filesystem 1024−blocks Used Available Capacity Mounted on
/dev/disk0s2 731734976 154168416 577310560 22% /
devfs 186 186 0 100% /dev
map –hosts 0 0 0 100% /net
map auto_home 0 0 0 100% /home
map –static 0 0 0 100% /Volumes/oth
$

In the preceding example output, we see that the root file system has plenty of space.
But your file system may be laid out differently. Symlinks can be used when necessary to
graft a larger disk area onto your home directory.

If you’re using VirtualBox, create virtual disks with enough space for the Linux
operating system and your cross-compiler environment. You may want to put your Linux
software on one virtual disk with a minimum size of about 8–10 GB (allow it to grow larger).

Allow a minimum of 10 GB for your cross-compiler environment (and allow it to
grow). 9 GB is just barely large enough to host the cross-compiler tools and allow you to
compile a Hello World type of program. But you must also factor in additional space for
the Raspberry Linux kernel, its include files, and all other third-party libraries that you
might need to build with (better still, a copy of the Raspberry Pi’s root file system).

Within your development Ubuntu/Debian build environment, make sure your
cross-compiler and build area are using the disk area that has available space. It is easy to
glibly create a directory someplace convenient and find out later that the space that you
thought you were going to use wasn’t available.

CHAPTER 6 ■ CROSS-COMPILING

67

Building the Cross-Compiler
At this point, I’ll assume that you’ve set up and installed Ubuntu in VirtualBox, if
necessary. Otherwise, you are building your cross-compiler tools on an existing Ubuntu/
Debian system, with disk space sufficient for the job.

We will be using the basic recipe outlined from this web resource:
“Cross-Compiling for Raspberry Pi,” www.kitware.com/blog/home/post/426

Download crosstool-NG
The released crosstool-NG downloads are found at this site:

http://crosstool-ng.org/download/crosstool-ng/
 current release: crosstool-ng-1.19.0.tar.bz2

It is normal practice to download the newest stable version of software. I am using

1.19.0 in this text because it was current at the time of writing.

Staging Directory
I’ll assume that you’ve symlinked to your disk area with sufficient available disk space. In
other words, the symlink named ~/devel points to the development area to be used. This
can be just a subdirectory if you have sufficient disk space there.

In directory ~/devel, create a subdirectory named staging (~/devel/staging) and
change it to the following:

$ cd ~/devel # Dir is ~/devel
$ mkdir staging
$ cd ./staging # Dir is ~/devel/staging
$ pwd
/home/myuserid/devel/staging
$

Unpack the Tarball
Assuming the tarball crosstool-ng-1.19.0.tar.bz2 was downloaded to your home
directory, you would perform the following (change the option j if the suffix is not .bz2):

$ tar xjvf ~/crosstool−ng−1.19.0.tar.bz2
. . .
$

After the unpacking completes, you should have a subdirectory named
crosstoolng-1.19.0 in your staging directory.

http://www.kitware.com/blog/home/post/426
http://crosstool-ng.org/download/crosstool-ng/

CHAPTER 6 ■ CROSS-COMPILING

68

Create /opt/x-tools
You can choose a different location if you like, but I’m going to assume that the crosstool-NG
software is going to install into /opt/x-tools. We’ll also assume your user ID is fred
(substitute your own).

$ sudo mkdir -p /opt/x−tools
$ sudo chown fred /opt/x−tools

Once your installation is complete later, you can change the ownership back to root
for protection.

Install Package Dependencies
The crosstool-NG build depends on several packages provided by Ubuntu/Debian as
optionally installed software:

bison: GNU yacc

flex: GNU lex

subversion: Subversion source control package

libtool: Library tool

texinfo: Install the texinfo package

gawk: GNU awk (gawk)

gperf: Perfect hash function generator

automake: Tool for generating GNU standards-compliant
Makefiles

Save time by making sure these packages are installed before proceeding to the next
step. Package dependencies often change over time. Depending on your host system,
you may find that additional packages (such as libncurses5-dev, for example) are also
needed. If more packages are needed, the configure step usually identifies them.

Configure crosstools-NG
With the package dependencies installed, you are now in a position to make the
crosstool-NG software:

$ cd ~/devel/staging/crosstool−ng−1.19.0
$./configure −−prefix=/opt/x−tools

If this completes without errors, you are ready to build and install the crosstool-NG
software. If it reports that you are missing package dependencies, install them now and
repeat.

CHAPTER 6 ■ CROSS-COMPILING

69

make crosstool-ng
At this point, you should have no trouble building crosstool-NG. Perform the following
make command:

$ cd ~/devel/staging/crosstool−ng−1.19.0
$ make

This takes very little time and seems trouble free.

make install
Once the crosstool-NG package has been compiled, it is ready to be installed into
/opt/x-tools. From the same directory:

$ sudo make install

If you still own the directory /opt/x-tools from earlier (recall sudo chown fred
/opt/x−tools), you won’t need to use sudo in the preceding step. After make install is
performed, you will have the crosstool-NG command ct-ng installed in the directory
/opt/x-tools/bin.

PATH
To use the newly installed ct-ng command, you will need to adjust your PATH
environment variable:

$ PATH="/opt/x−tools/bin:$PATH"

The website also indicates that you might have to unset environment variable
LD_LIBRARY_PATH, if your platform has it defined. If so, then unset it as follows:

$ unset LD_LIBRARY_PATH

Now you should be able to run ct-ng to get version info (note that there are no
hyphens in front of version in the following command). Seeing the version output
confirms that your ct-ng command has been installed and is functional:

$ ct–ng version

This is crosstool-NG version 1.19.0

Copyright (C) 2008 Yann E. MORIN <yann.morin.1998@free.fr>
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

CHAPTER 6 ■ CROSS-COMPILING

70

Cross-Compiler Configuration
The command ct-ng simplifies the work necessary to configure and build the cross-
compiler tool chain. From here, we are concerned with building the cross-compiler tools
themselves. When that process is completed, you will have populated the cross-compiler
tools into the directory /opt/x-tools/arm-unknown-linux-gnueabi.

Before ct-ng can build your cross-compiler, it must first be configured:

$ cd ~/devel/staging
$ ct−ng menuconfig

If you get a “command not found” error message, check that the PATH variable is set
properly.

Paths and Misc Options
When the command starts up, the menu configuration screen is presented.

Press Enter, to open the Paths and Misc Options submenu.
Once in the Paths and Misc Options menu, as shown next, use the cursor key to

move down to Try Features Marked as Experimental. Once that line is highlighted, press
the spacebar to put an asterisk inside the square brackets, to select the option (pressing
space again toggles the setting).

CHAPTER 6 ■ CROSS-COMPILING

71

After doing that, while in the same menu, move the cursor down to the middle entry
labelled Prefix Directory and press Enter to select it.

For the procedure used in this book, modify the path to the following:

/opt/x-tools/${CT_TARGET}

as illustrated here:

Once the pathname is established, press Enter on the OK button shown. This returns
you to the Paths and Misc Options menu.

Then select the Exit button shown at the bottom, and press Enter again.

CHAPTER 6 ■ CROSS-COMPILING

72

Target Options
From the main menu, select Target Options with the cursor and press Enter to open that
menu. Then choose Target Architecture and press Enter. In that menu, choose Arm and
use the Select button at the bottom. This returns you to the Target Options menu.

While in the Target Options menu (shown next), verify the Endianness setting by
reviewing the status in brackets. It should read Little Endian. If not, enter that menu and
change it to Little endian. Below the Endianness menu item is the Bitness option.
It should already indicate 32-bit. If not, select it and change the setting to 32-bit.

Finally, exit this submenu with the Exit button.

CHAPTER 6 ■ CROSS-COMPILING

73

Operating System
At the main menu again, choose Operating System and then choose Linux Kernel
Version.

It is best to choose the release that most closely matches the kernel that you are using
(perhaps, for example, 3.10.2). Once you have chosen, exit back to the main menu.

Binary Utilities
At the main menu, open the Binary Utilities menu. Cursor down to Binutils Version and
open that submenu:

In this menu, you are presented various versions of binutils that can be used. Choose
the most current stable (nonexperimental) version. Version 2.22 was chosen here. Select
the version and exit back to the main menu.

CHAPTER 6 ■ CROSS-COMPILING

74

C Compiler
At the main menu, open the C Compiler submenu. Here it is recommended that you
enable the Show Linaro Versions option.

Once that is enabled, you can select the submenu Gcc Version:

The preceding figure shows linaro-4.8.2013.06-1 being chosen (which I had good
results with). Newer versions are always becoming available. Choose the compiler and
then choose the Select button at the bottom.

Then choose Exit once again to return to the main menu.

CHAPTER 6 ■ CROSS-COMPILING

75

Save Configuration
Unless you have a reason to change anything else, exit the menu again to cause the Save
prompt to appear:

Upon selecting Yes, the command exits with the following session output showing in
the terminal window:

$ ct−ng menuconfig
 IN config.gen/arch.in
 IN config.gen/kernel.in
 IN config.gen/cc.in
 IN config.gen/libc.in
 IN config/config.in
#
configuration saved
#

At this point, it is worth mentioning that you may want to save your configuration
somewhere outside the current directory. The configuration is saved in a file named
.config and can be copied elsewhere. The following is a suggestion:

$ cp .config ~/ct-ng.config.bak

Saving the file outside the current directory will prevent accidental loss if
ct-ng distclean is invoked.

Build Cross-Compiler
Check the ownership of /opt/x-tools. If you don’t own this directory, change the
ownership now:

$ sudo chown −R fred /opt/x−tools

This will save you from having to execute the build process with root privileges.
Now at long last, you can initiate the building of the cross-compiler:

$ cd ~/devel/staging
$ ct−ng build

CHAPTER 6 ■ CROSS-COMPILING

76

Allow a good block of time for this job. This is not something that can be pushed
through in a hurry. Ideally, you can just leave the command to run and check for
successful completion in an hour or so. However, it is not uncommon for different
software problems to arise at this stage. I once spent an entire Saturday troubleshooting
this step. If you do encounter problems, read the next section for some troubleshooting
tips.

If all goes well, ct-ng compiles and installs tools into /opt/x-tools without any
further interaction. In the following session, Retrieving needed toolchain components
is rather brief, because this was a session rerun with the components cached somewhere.
Your download times will be longer when doing this for the first time.

[INFO] Performing some trivial sanity checks
[INFO] Build started 20140103.102402
[INFO] Building environment variables
[INFO] ==
[INFO] Retrieving needed toolchain components' tarballs
[INFO] Retrieving needed toolchain components' tarballs: done in 0.13s (at 00:04)
[INFO] ==
[INFO] Extracting and patching toolchain components
[INFO] Extracting and patching toolchain components: done in 3.96s (at 00:08)
[INFO] ==
[INFO] Installing GMP for host
[INFO] Installing GMP for host: done in 37.57s (at 00:46)
[INFO] ==
[INFO] Installing MPFR for host
[INFO] Installing MPFR for host: done in 18.16s (at 01:04)
[INFO] ==
[INFO] Installing PPL for host
[INFO] Installing PPL for host: done in 268.27s (at 05:32)
[INFO] ==
[INFO] Installing CLooG/PPL for host
[INFO] Installing CLooG/PPL for host: done in 6.45s (at 05:39)
[INFO] ==
[INFO] Installing MPC for host
[INFO] Installing MPC for host: done in 7.97s (at 05:47)
[INFO] ==
[INFO] Installing binutils for host
[INFO] Installing binutils for host: done in 53.52s (at 06:40)
[INFO] ==
[INFO] Installing pass -1 core C compiler
[INFO] Installing pass -1 core C compiler: done in 222.36s (at 10:23)
[INFO] ==
[INFO] Installing kernel headers
[INFO] Installing kernel headers: done in 4.54s (at 10:27)
[INFO] ==

CHAPTER 6 ■ CROSS-COMPILING

77

[INFO] Installing C library headers & start files
[INFO] Installing C library headers & start files: done in 31.26s (at 10:58)
[INFO] ==
[INFO] Installing pass -2 core C compiler
[INFO] Installing pass -2 core C compiler: done in 512.54s (at 19:31)
[INFO] ==
[INFO] Installing C library
[INFO] Installing C library: done in 805.58s (at 32:57)
[INFO] ==
[INFO] Installing final compiler
[INFO] Installing final compiler: done in 484.58s (at 41:01)
[INFO] ==
[INFO] Cleaning -up the toolchain's directory
[INFO] Stripping all toolchain executables
[INFO] Cleaning -up the toolchain's directory: done in 3.86s (at 41:05)
[INFO] Build completed at 20130103.110507
[INFO] (elapsed: 41:04.93)
[INFO] Finishing installation (may take a few seconds)...
[41:05] /

The overall time for my build was 41 minutes (reported to be 83 minutes on a
Windows 8 Intel i5 using VirtualBox). My build was performed in VirtualBox running on
Mac OS X Mavericks, using the Intel i7 processor (2.8 GHz). On the same Mac, I found
that the times approximately doubled when the VirtualBox disk images were located on a
USB 2.0 disk drive. From these figures, you can estimate your build time.

Troubleshooting
The session output that you get from this build process is very terse. As such, you don’t
always get a clear idea of what the real failure was. For this reason, you’ll often need to
check the build.log file:

$ less build.log

Using less, you can navigate to the end of the build.log file by typing a capital G.
One failure that frequently occurs in the beginning is a failed download. While the

build process does retry downloads and tries different download methods, it can still fail.
All that you need to do is to start the build again. It will download only the remaining files
needed. Sometimes it will succeed on the second or third retry attempt.

CHAPTER 6 ■ CROSS-COMPILING

78

Sometimes a component will fail in its configuration phase. Check the build.log
file first to determine precisely which component is involved. Next you will want to
examine the config.log file for that particular component. For example, let’s say the isl
component failed. Dive down into the .build subdirectory until you find its config.log
file:

$ cd .build/arm-unknown-linux-gnueabi/build/build-isl-host-i686-build_pc-
linux-gnu
$ less config.log

Navigate to the end of config.log and work backward a few pages. Eventually, you
will see text describing the command that was tried and the error message produced.
In one instance, I was able to determine that the custom compiler option that I added
(-fpermissive) was causing the failure. The solution then was to remove that option and
try again.

Some errors will occur only with certain version choices. At one time, I was receiving
errors related to PPL and needed a patch to correct it. Google is your friend (the following
patch is an example):

http://patchwork.ozlabs.org/patch/330733/

I found that saving that patch to a file and applying it to the sources corrected the
issue. Later, when I decided to start over with a different choice of compiler, this patch
became unnecessary (the software was downloaded fresh again).

In getting through these issues, you can simply make corrections and then rerun the
ct-ng build command. It is recommended that you plan for a later rebuild of everything
again (after a clean), once the problems are solved. This will ensure that you have a good
build without dependency issues.

If, after a correction, you run into the same problem, you may need to do a clean
step first and start over. Depending on how deep you think the problem may be, choose
one of the following:

•฀ ct-ng clean

•฀ ct-ng distclean (Be careful; see the following text.)

The ct-ng clean command will usually be enough, forcing the next build to start
fresh. Any downloaded files and configuration will remain and are reused.

The ct-ng distclean command is much more drastic, since it removes all of the
downloaded content and your configuration files. I copied the .config file to .config.
bak and discovered to my horror that .config.bak had been removed! So if you back up
the .config file, copy it outside the current directory for safety.

Above all, keep your head. It’s difficult to troubleshoot these issues if you feel
time pressure or get angry over the time invested. When under time pressure, leave it
for another day when you can deal with it leisurely and thoughtfully. Each redo takes
considerable time. Wherever possible, eliminate the guesswork.

With each problem, take a deep breath, patiently look for clues, and pay attention to
the details in the error messages. Remember that line in the movie Apollo 13 : “Work the
problem, people!”

http://patchwork.ozlabs.org/patch/330733/

79

CHAPTER 7

Cross-Compiling the Kernel

While normally not possible on embedded platforms, it is possible to build kernels
on your Raspberry Pi with its luxurious root file system. Despite this, cross-compiling
on desktop systems is preferred for faster compile times. This chapter examines the
procedure for building your Raspbian kernel.

It is assumed that you have the cross-compiler tools and environment ready. Either
the tool set built in Chapter 6 or an installed prebuilt tool chain will do. In this chapter, I
assume that the cross-compiler prefix is as follows (ending in a hyphen):

/opt/x−tools/arm–unknown−linux–gnueabi/bin/arm−unknown−linux−gnueabi−

Substitute as appropriate, if your tools are installed differently.

Image Tools
According to the “RPi Buying Guide” from eLinux.org, “The way the memory addresses
are arranged in the Broadcom SoC, you will need to prepare the compiled image for use.”
Consequently, an image tool must be used so that the built kernel image can be modified
for booting by the Raspberry Pi.

Note ■ You can read more of the “RPi Buying Guide” at http://s3.amazonaws.com/

szmanuals/8d4eb934fa27c2cbecd2a7f3b6922848.

Let’s begin by creating and changing to a work directory:

$ mkdir ~/work
$ cd ~/work

The tools can be downloaded from here:

$ wget https://github.com/raspberrypi/tools/archive/master.tar.gz

http://s3.amazonaws.com/szmanuals/8d4eb934fa27c2cbecd2a7f3b6922848
http://s3.amazonaws.com/szmanuals/8d4eb934fa27c2cbecd2a7f3b6922848
https://github.com/raspberrypi/tools/archive/master.tar.gz

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

80

They can also be fetched from the Git repository:

$ git clone --depth 1 git@github.com:raspberrypi/tools.git

Save time with the –depth 1 option to avoid downloading older versions that you are
uninterested in. The git command will produce a subdirectory named tools. After git
has completed, the following additional git steps are recommended:

$ rm -fr ./tools/.git # Delete unneeded .git subdirectory
$ mv tools tools-master # Rename for consistency in this chapter
$ tar czvf master.tar.gz # create master.tar.gz as if we downloaded it

Whether you simply downloaded master.tar.gz or created it in the preceding step
(after using git), unpack the tarball into /opt as follows:

$ cd /opt
$ sudo tar xzf ~/work/master.tar.gz

This creates the subdirectory /opt/tools-master.

Note ■ If you have trouble using git from VirtualBox, there may be networking issues

involved (reconfiguration may correct this). The simplest workaround is to simply use

git outside VirtualBox and upload the master.tar.gz file with scp.

If you need to save space and you don’t need to use the other tools included, remove
them:

$ cd /opt/tools−master
$ ls
arm-bcm2708 configs mkimage pkg sysidk usbboot

If you are using the cross-compiler from Chapter 6, you won’t need the arm-bcm2708
subdirectory:

$ cd /opt/tools−master
$ sudo rm −fr arm-bcm2708

To use the image tool, you’ll need Python installed, so install it now, if needed.

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

81

Download Kernel
The first thing needed is the Raspbian kernel sources. If you want the “bleeding edge” in
development, the git command is the best way to acquire the source code.

While you could clone the entire Linux project, this will result in a long download.
The following method is suggested as a quick way to obtain the kernel release of interest
from git (change 3.10.y to the release that you want to fetch):

$ mkdir ~/work/linux
$ cd ~/work/linux
$ git init
$ git f etch –depth 1 git@github.com:raspberrypi/linux.git \

rpi-3.10.y:refs/remotes/origin/rpi-3.10.y
$ git checkout origin/rpi-3.10.y

The source tarball can be fetched more easily with the wget command. Here is an
example download:

$ wget https://github.com/raspberrypi/linux/archive/rpi−3.10.y.tar.gz

If you get an error message about an untrusted certificate (ERROR: The certificate
of 'github.com' is not trusted), add the –no-check-certificate option:

$ wget −−no−check−certificate \
 https://github.com/raspberrypi/linux/archive/rpi−3.10.y.tar.gz

In this chapter, I assume that you have downloaded the tarball. Once the download
is complete, unpack the sources somewhere convenient. I also assume that you’re going
to use ~/work/rasp as your working directory:

$ mkdir −p ~/work/rasp
$ cd ~/work/rasp
$ tar xzf ~/rpi−3.10.y.tar.gz

This should leave you a subdirectory named rpi-3.10.y that you can change to the
following:

$ cd ~/work/rasp/linux−rpi−3.10.y

Edit Makefile
It is possible to put the ARCH= and CROSS-COMPILE= definitions on the make command line
like this:

$ make ARCH=arm CROSS−COMPILE=/opt/x−tools/arm−unknown−\
linux−gnueabi/bin/arm−unknown−linux−gnueabi−

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

82

However, this is tedious and error prone. You could use an alias or some other
workaround, but the best approach is probably just to edit these parameters in the
top-level Makefile.

Using an editor of your choice, look for a line in the top-level Makefile that starts
with ARCH=, as shown here:

ARCH ?= $ (SUBARCH)
CROSS_COMPILE ?= $ (CONFIG_CROSS_COMPILE:"%"=%)

The safest thing to do is to duplicate these pair of lines and comment out the first
pair, keeping them around in their original form. Then modify the second pair as shown:

#ARCH ?= $ (SUBARCH)
#CROSS_COMPILE ?= $ (CONFIG_CROSS_COMPILE:"%"=%)

ARCH ?= arm
CROSS_COMPILE ?= \
 /opt/x−tools/arm−unknown−linux−gnueabi/bin/arm−unknown−linux−gnueabi−

The CROSS_COMPILE prefix should match everything up to but not including the
command name gcc shown next (edited to fit). If you’ve not already done so, edit the
PATH variable so that the cross-compiler tools are searched first:

PATH="/opt/x-tools/arm-unknown-linux-gnueabi/bin:$PATH"

Now verify that your compiler is being located:

$ type arm−unknown−linux−gnueabi−gcc
arm−unknown−linux−gnueabi−gcc is hashed \
(/opt/x−tools/arm−unknown−linux−gnueabi/bin/arm−unknown−linux−gnueabi−gcc)

make mrproper
In theory, this step shouldn’t be necessary. But the kernel developers want you to do it
anyway, in case something was accidentally left out of place. Keep in mind that this step
also removes the .config file. So if you need to keep it, make a copy of it.

$ make mrproper

Caution ■ The command make mrproper cleans up everything, including your

kernel .config file. You may want to copy .config to .config.bak.

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

83

Kernel Config
Before building your kernel, you need a configuration. The downloaded kernel source
does not include your Pi’s kernel settings. If you want to build the kernel with the same
configuration as the one you are using, grab your configuration from your running Pi:

$ scp pi@rasp:/proc/config.gz.

Then uncompress the configuration and move it into place:

$ gunzip <config.gz >~/work/rasp/linux−rpi−3.10.y/.config

Alternatively, because there may be new options that were not used by your old
kernel, you may want to start with a fresh set of default options for your kernel. Copying
these defaults will give you a good starting point from which to proceed (assuming the
directory ~/work/rasp/linux-rpi-3.10.y):

$ cp./arch/arm/configs/bcmrpi_defconfig .config

At this point, you can modify the configuration, but for your first build, I suggest
you leave it as is. Once you get a successful build and run of the kernel, you can go back
with confidence and make changes. Otherwise, if the new kernel fails, you won’t know
whether it was the kernel, your build procedure, or the configuration that you chose.

If you downloaded your kernel from the Git repositoryfail if you copied the bcmrpi_
defconfig configuration. The reason is that some of the configured modules may not be
fully developed (or undergoing changes), but are enabled in the configuration for testing.
For example, if an IPTables module fails to compile, you may need to disable it in the
configuration. If the option is difficult to find in the menu (see make menuconfig next), it
is an accepted practice to just edit the .config file. Things are often easier to find with the
editor.

make menuconfig
The first time around, you should start make menuconfig and then just exit. When you
decide later that you need to make configuration changes, you can either use the menu-
driven approach here or edit the .config file directly. The menu-driven approach is
usually best since it can guide you through the process:

$ make menuconfig

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

84

make
Now that the configuration has been established, start the build process. If you hadn’t
planned on making configuration changes, you might still be prompted with some
configuration questions. To proceed without configuration changes, simply press Enter to
accept the existing value for the parameter.

$ make

The build process takes a fair bit of time. On a MacBook Pro using an Intel i7
processor, hosting Ubuntu in VirtualBox, the process takes about 40 minutes to complete.
You mileage will vary.

Next, build the modules for the kernel:

$ make modules

Now you are ready to install the new kernel and its modules.

Tip ■ If your /tmp file system is not large enough for the build, you can direct the

temporary files to another directory. For example, to use ./tmp in your work area:

$ mkdir ./tmp

$ export TMPDIR="$PWD/tmp"

Prepare Kernel Image
In the subdirectory arch/arm/boot/zImage is your built kernel image:

$ cd ~/work/rasp/linux−rpi−3.10.y/arch/arm/boot
$ ls −l zImage
−rwxr−xr−x 1 wwg wwg 3696136 2014−06−22 13:58 zImage

Now let’s prepare an image that can be booted by the Raspberry Pi.
The image tool seems to need to run from its own directory (otherwise, it is unable

to locate the boot-uncompressed.txt file). So change to the image tool’s directory and
run it from there. It will create the file kernel.img in that directory, so make sure you have
permissions there:

$ cd /opt/tools−master/mkimage
$ python /opt/tools−master/mkimage/imagetool−uncompressed.py \
 ~/work/rasp/linux−rpi−3.10.y/arch/arm/boot/zImage
$ ls −l
total 3160

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

85

-rw-rw-r-- 1 root root 157 May 8 08:14 args-uncompressed.txt
-rw-rw-r-- 1 root root 201 May 8 08:14 boot-uncompressed.txt
-rw-rw-r-- 1 root root 32768 Jun 24 08:28 first32k.bin
-rwxrwxr-x 1 root root 822 May 8 08:14 imagetool-uncompressed.py
-rw-r--r-- 1 root root 3187280 Jun 24 08:28 kernel.img

From this, we see that it creates file kernel.img, which is 3,187,280 bytes in size.

Install Kernel Image
Here I assume that you have the SD card mounted on your desktop, rather than in
VirtualBox. The SD card can be mounted in VirtualBox, but this takes some special care
and additional effort. See the “VirtualBox Mount of SD Card” section at the end of the
chapter (if this works for you, this will be more convenient).

With your SD card mounted, you can change out your kernel. It is recommended that
you rename the original kernel.img file in case you want to reinstate it later. On the Mac,
the session might look something like this:

$ cd /Volumes/Untitled/ # Where the SD card is mounted
$ ls
bootcode.bin config.txt issue.txt kernel_emergency.img
cmdline.txt fixup.dat kernel.img start.elf
config.bak fixup_cd.dat kernel_cutdown.img start_cd.elf
$ mv kernel.img kernel.orig

Once the original kernel is safely renamed on the SD card, you can copy the new
kernel onto it:

$ scp wwg@osx-rpi:/opt/tools−master/mkimage/kernel.img /Volumes/Untitled/.
wwg@osx-rpi's password:
kernel.img 100% 2665KB 2.6MB/s 00:00
$ sync

Here I transferred the prepared image using scp, from VirtualBox machine osx-rpi,
installing the new kernel as kernel.img. You may be able to boot the new kernel without
updating the modules (obviously, the new modules will not be available). Once you
boot up your Pi with the new kernel, then using scp you should be able to copy your new
module’s tarball to it (see the “Modules” section later). Try booting the new kernel and
log in to check it (long lines edited):

$ ssh pi@rasp
...
$ dmesg | head
...

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

86

[0.000000] Linux version 3.10.38 (wwg@osx-xpi) \
 (gcc version 4.8.2 20130603 (prerelease) \
 (crosstool −NG 1.19.0)) \
 #3 PREEMPT Mon Jun 23 22:26:50 EST 2014
...

Here we have confirmation that the kernel was built by wwg@osx-xpi (on VirtualBox),
using the crosstool-NG development tools and built on June 23. This is confirmation
that the kernel is the new one that was installed. Next, of course, the modules need to be
installed.

Boot Failure
If you see the initial colored flash screen remain on the console, this indicates that the
kernel.img file failed to load/start.43

Modules
The modules need to be staged somewhere, so you can transfer them to the Pi’s root
file system (on the SD card). Here I’ll stage them in ~/work/modules. Specify the full
pathname to the staging directory by using the INSTALL_MOD_PATH variable:

$ mkdir −p ~/work/modules
$ make INSTALL_MOD_PATH=$HOME/work/modules modules_install

Note that $HOME is safer than the tilde (~) in the make command, since the shell may
not substitute it properly. The bash shell, version 4.3.8, does seem to handle the tilde,
however.

After this install step completes, you will have a subtree of kernel modules deposited
there. These files now need to be installed in the Pi’s root file system. Either mount the
Pi’s root file system under Linux, or use the existing kernel on the Pi itself. The following
shows how the modules are put into a tar file for transport to the Pi:

$ cd ~/work/modules
$ tar czf modules.tar.gz .
$ tar tzf modules.tar.gz | head −4
. /
. /modules.tar.gz
. /lib/
. /lib/modules/
$ scp modules.tar.gz pi@rasp:.

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

87

On the Raspberry Pi, you can install it:

$ tar tzf modules.tar.gz | head−7
. /
. /modules.tar.gz
. /lib/
. /lib/modules/
. /lib/modules/3.2.27/
. /lib/modules/3.2.27/modules.symbols.bin
. /lib/modules/3.2.27/modules.usbmap
$ cd /
$ sudo tar xzf ~/modules.tar.gz

With the new modules installed, reboot your new kernel. Once the Pi boots up, log in
and check whether any modules got loaded:

$ lsmod
Module Size Used by
snd_bcm2835 16292 0
...

Firmware
From time to time, you should check to see whether new firmware is available. This code
is available in binary form only. There are always two versions of the firmware available:35

Master: The current firmware used in Raspbian

Next: The firmware in development, which provides GPU
updates

Depending on your needs, choose one of the following:

$ wget−−no−check−certificate\
 https://github.com/raspberrypi/firmware/archive/master.tar.gz

$ wget−−no−check−certificate\
 https://github.com/raspberrypi/firmware/archive/next.tar.gz

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

88

Of particular interest is the bootcode.bin firmware file. There are other files like the
*.dat files. It is unclear when these dat files should be replaced. These may depend on
the release of the Raspbian Linux kernel.

$ cd ./firmware−master/boot
$ ls −l
total 37248
−rw−r−−r−− .. 18693 26 Jan 14:31 COPYING.linux
−rw−r−−r−− .. 1447 26 Jan 14:31 LICENCE.broadcom
−rw−r−−r−− .. 17764 26 Jan 14:31 bootcode.bin
−rw−r−−r−− .. 5735 26 Jan 14:31 fixup.dat
−rw−r−−r−− .. 2260 26 Jan 14:31 fixup_cd.dat
−rw−r−−r−− .. 8502 26 Jan 14:31 fixup_x.dat
−rw−r−−r−− .. 2800968 26 Jan 14:31 kernel.img
−rw−r−−r−− .. 9609864 26 Jan 14:31 kernel_emergency.img
−rw−r−−r−− .. 2539540 26 Jan 14:31 start.elf
−rw−r−−r−− .. 569016 26 Jan 14:31 start_cd.elf
−rw−r−−r−− .. 3472580 26 Jan 14:31 start_x.elf

If you think you need a firmware update, copy from this subdirectory to your
Raspberry Pi’s /boot directory.

VirtualBox Mount of SD Card
All this shuffling images around remotely using scp is a nuisance, but it gets the job done.
If you are running VirtualBox, you may find that you can mount the SD card directly. This
allows you to more easily update the SD card file systems, including the modules and
firmware. I’ll be showing the VirtualBox procedure for a Mac, but the process is similar for
Windows.

The first step on the Mac is to determine which disk device the SD card is assigned to:

$ diskutil list

In my case, the SD card showed up as /dev/disk2 (this is obvious because it wasn’t
there prior to inserting the SD card).

Next you need to make sure that any mounted file systems from that SD card
are unmounted (the Mac likes to automount everything it can). Using the diskutil
command, unmount all file systems mounted from /dev/disk2:

$ diskutil unmountDisk /dev/disk2

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

89

Finally (for the Mac), you need to grant permissions to VirtualBox to use the raw
device. Since VirtualBox likely runs under your own login, you need to grant permissions
to it. I’ll use the lazy approach here, to grant permissions to everyone on the device (the
device will go away as soon as it is removed anyway):

$ sudo chmod 0666 /dev/disk2

Note that once you remove the SD card, and later insert it, you will need to repeat
this step.

Next, you will need to locate the VBoxManage command. On the Mac you will find it
here (Windows users may find it in C:\Program Files\Sun):

$ cd /Applications/VirtualBox.app/Contents/MacOS

You can either add that directory to your current PATH, or simply change to that
directory. Then use the VBoxManage command to create a control file (*.vmdk). This
control file informs VirtualBox how to access that raw device (place the *.vmdk wherever
you find it convenient):

$ sudo VBoxManage internalcommands createrawvmdk \
 -filename /Volumes/VirtualBox/sddisk.vmdk \
 -rawdisk /dev/disk2

Now enter your VirtualBox console and open the storage settings. Click the Add
Hard Disk icon and select the control file you created (in the example, it was created on
/Volumes/VirtualBox/sddisk.vmdk). Make sure you add this device after your current
boot device. Otherwise, VirtualBox will try to boot from your SD card instead.

After starting VirtualBox, you should see your new devices under Linux. In my case,
the SD card devices showed up as /dev/sdb (entire SD card), /dev/sdb1 (partition 1), and
/dev/sdb2 (partition 2). With this success, it is now possible to mount these partitions
after creating mount points (I used ~/mnt1 and ~/mnt2):

$ sudo mount /dev/sdb1 ~/mnt1
$ sudo mount /dev/sdb2 ~/mnt2

Now you can list those mount points to see the Raspberry Pi file system content. This
access makes it an easy matter to install your kernel:

$ cd /opt/tools−master/mkimage
$ sudo mv ~/mnt1/kernel.img ~/mnt1/kernel.orig # Rename original kernel
$ sudo dd if=kernel.img ~/mnt1/kernel.img # Install new kernel image

Likewise, you can now update the kernel modules:

$ cd ~/mnt2 # Raspberry Pi' Root file system
$ tar xzvf ~/work/modules/modules.tar.gz # Unpack into ~/mnt2/lib

CHAPTER 7 ■ CROSS-COMPILING THE KERNEL

90

With the modifications completed, change out of the file system (to unbusy them)
and unmount them:

$ cd ~
$ sudo umount ~/mnt1
$ sudo umount ~/mnt2

If you are hosting VirtualBox on a Mac, the Mac will automount the first partition the
moment that VirtualBox closes the SD card device. So be sure to undo that before pulling
the SD card out (to prevent any file system corruption). You can use the Mac’s diskutil
to do this for you:

$ diskutil unmountDisk /dev/disk2

91

APPENDIX A

Glossary

AC

Alternating current

Amps

Amperes

ATAG

ARM tags, though now used by boot loaders for other architectures

AVC

Advanced Video Coding (MPEG-4)

AVR

Wikipedia states that “it is commonly accepted that AVR stands for Alf (Egil Bogen)
and Vegard (Wollan)’s RISC processor.”

BCD

Binary-coded decimal

Brick

To accidently render a device unusable by making changes to it

CEA

Consumer Electronics Association

cond

Condition variable

CPU

Central processing unit

CRC

Cyclic redundancy check, a type of hash for error detection

CVT

Coordinated Video Timings standard (replaces GTF)

daemon

A Unix process that services requests in the background

DC

Direct current

APPENDIX A ■ GLOSSARY

92

DCD

RS-232 data carrier detect

DCE

RS-232 data communications equipment

Distro

A specific distribution of Linux software

DLNA

Digital Living Network Alliance, whose purpose is to enable sharing of digital media
between multimedia devices

DMM

Digital multimeter

DMT

Display Monitor Timing standard

DPI

Display Pixel Interface (a parallel display interface)

DPVL

Digital Packet Video Link

DSI

Display Serial Interface

DSR

RS-232 data set ready

DTE

RS-232 data terminal equipment

DTR

RS-232 data terminal ready

ECC

Error-correcting code

EDID

Extended display identification data

EEPROM

Electrically erasable programmable read-only memory

EMMC

External mass media controller

Flash

Similar to EEPROM, except that large blocks must be entirely rewritten in an update
operation

FFS

Flash file system

APPENDIX A ■ GLOSSARY

93

FIFO

First in, first out

FSP

Flash storage processor

FTL

Flash translation layer

FUSE

Filesystem in Userspace (File system in USErspace)

GNU

GNU is not Unix

GPIO

General-purpose input/output

GPU

Graphics processing unit

GTF

Generalized Timing Formula

H.264

MPEG-4 Advanced Video Coding (AVC)

H-Bridge

An electronic circuit configuration that allows voltage to be reversed across the load

HDMI

High-Definition Multimedia Interface

HID

Human interface device

I2C

Two-wire interface invented by Philips

IC

Integrated circuit

IDE

Integrated development environment

IR

Infrared

ISP

Image Sensor Pipeline

JFFS2

Journalling Flash File System 2

LCD

Liquid-crystal display

APPENDIX A ■ GLOSSARY

94

LED

Light-emitting diode

mA

Milliamperes, a measure of current flow

MCU

Microcontroller unit

MMC

MultiMedia Card

MISO

Master in, slave out

MOSI

Master out, slave in

MTD

Memory technology device

mutex

Mutually exclusive

NTSC

National Television System Committee (analog TV signal standard)

PAL

Phase Alternating Line (analog TV signal standard)

PC

Personal computer

PCB

Printed circuit board

PLL

Phase-locked loop

PoE

Power over Ethernet (supplying power over an Ethernet cable)

POSIX

Portable Operating System Interface (for Unix)

pthreads

POSIX threads

PWM

Pulse-width modulation

Pxe

Preboot execution environment, usually referencing booting by network

RAM

Random-access memory

APPENDIX A ■ GLOSSARY

95

RI

RS-232 ring indicator

RISC

Reduced instruction set computer

RH

Relative humidity

ROM

Read-only memory

RPi

Raspberry Pi

RS-232

Recommended standard 232 (serial communications)

RTC

Real-time clock

SBC

Single-board computer

SD

Secure Digital Association memory card

SDIO

SD card input/output interface

SDRAM

Synchronous dynamic random-access memory

SoC

System on a chip

SMPS

Switched-mode power supply

SPI

Serial Peripheral Interface (bus)

Stick parity

Mark or space parity, where the bit is constant

TWI

Two-wire interface

UART

Universal asynchronous receiver/transmitter

USB

Universal Serial Bus

V3D

Video for 3D

APPENDIX A ■ GLOSSARY

96

VAC

Volts AC

VESA

Video Electronics Standards Association

VFS

Virtual file system

VNC

Virtual Network Computing

V
SB

ATX standby voltage

YAFFS

Yet Another Flash File System

97

APPENDIX B

Power Standards

The following table references the standard ATX power supply voltages, regulation
(tolerance), and voltage ranges.15

The values listed here for the +5 V and +3.3 V supplies are referenced in Chapter 2
of Raspberry Pi Hardware Reference (Apress, 2014) as a basis for acceptable power supply
ranges. When the BroadCom power specifications become known, they should be
used instead.

Supply

(Volts) Tolerance Minimum Maximum

Ripple

(Peak to Peak)

+5 V ±5% ± 0.25 V +4.75 V +5.25 V 50 mV

-5 V ±10% ±0.50 V –4.50 V –5.50 V 50 mV

+12 V ±5% ±0.60 V +11.40 V +12.60 V 120 mV

-12 V ±10% ±1.2 V –10.8 V –13.2 V 120 mV

+3.3 V ±5% ±0.165 V +3.135 V +3.465 V 50 mV

+5 V
SB

±5% ±0.25 V +4.75 V +5.25 V 50 mV

99

APPENDIX C

Raspbian apt Commands

This appendix highlights the usage of commonly used package management commands
under Raspbian Linux.

List Available Packages

$ apt–cache pkgnames
tesseract−ocr−epo
pipenightdreams
openoffice.org−l10n−mn
mumudvb
tbb−examples
libsvm−java
libsalck3−dev
libboost−timer1.50−dev
snort−rules−default
freediams−doc−fr
...

List Installed Packages

$ dpkg -l
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/
Trig-pend

|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)

APPENDIX C ■ RASPBIAN APT COMMANDS

100

||/ Name Version Architecture Description
+++ -=========== -============= -============- ==========================
ii adduser 3.113+nmu3 all add and remove users

and groups
ii alsa-base 1.0.25+2+nmu2 all ALSA driver

configuration files
ii alsa–utils 1.0.25-3 armhf Utilities for configuring

and \ using ALSA
ii apt 0.9.7.6+rpi1 armhf commandline package manager
ii apt–utils 0.9.7.6+rpi1 armhf package managment related \
 utility programs

List Files for Package

$dpkg −L apt
/.
/etc
/etc/cron.daily
/etc/cron.daily/apt
/etc/logrotate.d
/etc/logrotate.d/apt
/etc/apt
/etc/apt/apt.conf.d
/etc/apt/apt.conf.d/01autoremove
/etc/apt/preferences.d
...

Perform Package Search

$ apt-cache search gnuplot
...
devscripts - scripts to make the life of a Debian Package maintainer easier
gnuplot - Command -line driven interactive plotting program
gnuplot-doc - Command -line driven interactive plotting program. Doc-package
gnuplot-mode - Yet another Gnuplot mode for Emacs
gnuplot-nox - Command-line driven interactive plotting program. No-X package
gnuplot-qt - Command-line driven interactive plotting program. QT-package
gnuplot-x11 - Command-line driven interactive plotting program. X-package
libchart-gnuplot -perl - module for generating two - and
three-dimensional plots
libgnuplot-ocaml -dev - OCaml interface to the gnuplot utility
libgnuplot-ruby - Transitional package for ruby-gnuplot
libgnuplot-ruby1 .8 - Transitional package for ruby-gnuplot

APPENDIX C ■ RASPBIAN APT COMMANDS

101

libgraphics-gnuplotif-perl - dynamic Perl interface to gnuplot
libploticus0 - script driven business graphics library
libploticus0-dev - Development files for the ploticus library
...

Install a Package

$ sudo apt-get install gnuplot-x11
Reading package lists...
Building dependency tree...
Reading state information...
The following extra packages will be installed:
 libglu1-mesa liblua5.1-0 libwxbase2.8-0 libwxgtk2.8-0
Suggested packages:
 gnuplot-doc libgnomeprintui2.2-0
The following NEW packages will be installed:
 gnuplot-x11 libglu1-mesa liblua5.1-0 libwxbase2.8-0 libwxgtk2.8-0
0 upgraded, 5 newly installed, 0 to remove and 107 not upgraded.
Need to get 4,967 kB of archives.
After this operation, 12.4 MB of additional disk space will be used.
Do you want to continue [Y/n]? y
Get:1 http :// mirrordirector.raspbian.org/raspbian/ wheezy/main libglu1-
mesa armhf 8.0.5-3 [152 kB]
Get:2 http :// mirrordirector.raspbian.org/raspbian/ wheezy/main liblua5.1-0
armhf 5.1.5-4 [145 kB]
Get:3 http :// mirrordirector.raspbian.org/raspbian/ wheezy/main
libwxbase2.8-0 armhf 2.8.12.1-12 [599 kB]
Get:4 http :// mirrordirector.raspbian.org/raspbian/ wheezy/main
libwxgtk2.8-0 armhf 2.8.12.1-12 [3 ,011 kB]
Get:5 http :// mirrordirector.raspbian.org/raspbian/ wheezy/main gnuplot-x11
armhf 4.6.0-8 [1 ,059 kB]
Fetched 4,967 kB in 12s (408 kB/s)
Selecting previously unselected package libglu1-mesa:armhf.
(Reading database ... 60788 files and directories currently installed .)

Unpacking libglu1 -mesa:armhf (from .../libglu1-mesa_8.0.5-3 _armhf.deb) ...
Selecting previously unselected package liblua5.1-0: armhf.
Unpacking liblua5.1-0: armhf (from .../liblua5.1-0_5.1.5-4 _armhf.deb) ...
Selecting previously unselected package libwxbase2.8-0: armhf.
Unpacking libwxbase2.8-0: armhf (from .../libwxbase2.8-0_2.8.12.1-12_armhf.
deb) ...
Selecting previously unselected package libwxgtk2.8-0: armhf.
Unpacking libwxgtk2.8-0: armhf (from .../libwxgtk2.8-0_2.8.12.1-12_armhf.
deb) ...
Selecting previously unselected package gnuplot-x11.

APPENDIX C ■ RASPBIAN APT COMMANDS

102

Unpacking gnuplot-x11 (from .../gnuplot-x11_4.6.0-8_armhf.deb) ...
Processing triggers for menu ...
Processing triggers for man-db ...
Setting up libglu1-mesa:armhf (8.0.5-3) ...
Setting up liblua5.1-0:armhf (5.1.5-4) ...
Setting up libwxbase2.8-0:armhf (2.8.12.1-12) ...
Setting up libwxgtk2.8-0:armhf (2.8.12.1-12) ...
Setting up gnuplot-x11 (4.6.0-8) ...
Processing triggers for menu ...
$

Remove a Package

apt−get remove pkg_name
apt−get purge pkg_name

Install Updates

apt−get update

Upgrade

apt−get upgrade

Obtain Kernel Sources

$ wget −−no−check−certificate \
 −O raspberrypi–linux−3.6.11.tar.gz \
 http://github.com/raspberrypi/linux/tarball/rpi−3.6.y

103

APPENDIX D

ARM Compile Options

For ARM platform compiles, the following site makes compiler option recommendations:
http://elinux.org/RPi_Software.

The site states the following:

The •฀ gcc compiler flags that produce the most optimal code for the
Raspberry Pi are as follows:

-•฀ Ofast -mfpu=vfp -mfloat -abi=hard -march=armv6zk
-mtune=arm1176jzf-s

For some programs, -•฀ Ofast may produce compile errors. In these
cases, -O3 or -O2 should be used instead.

•฀ -mcpu=arm1176jzf-s can be used in place of -march=armv6zk
-mtune=arm1176jzf-s.

http://elinux.org/RPi_Software

105

APPENDIX E

Mac OS X Tips

This appendix offers a couple of tips pertaining to Raspberry Pi SD card operations under
Mac OS X. Figure E-1 shows an SD card reader and a built-in card slot being used.

Figure E-1. USB card reader and MacBook Pro SD slot

The one problem that gets in the way of working with Raspberry Pi images on SD
cards is the automounting of partitions when the card is inserted. This, of course, can be
disabled, but the desktop user will find this inconvenient. So you need a way to turn it off,
when needed.

Another problem that occurs is determining the OS X device name for the card.
When copying disk images, you need to be certain of the device name! Both of these
problems are solved using the Mac diskutil command (found in /usr/sbin/diskutil).

Caution ■ Copying to the wrong device on your Mac can destroy all of your files.

Be afraid!

APPENDIX E ■ MAC OS X TIPS

106

Before inserting your SD cards, do the following:

$ diskutil list
/dev/disk0
#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme ∗750.2 GB disk0
1: EFI 209.7 MB disk0s1
2: Apple_HFS Macintosh HD 749.3 GB disk0s2
3: Apple_Boot Recovery HD 650.0 MB disk0s3

Check the mounts:

$ mount
/dev/disk0s2 on / (hfs, NFS exported, local, journaled)
...

Insert the SD card:

$ diskutil list
/dev/disk0
#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme ∗750.2 GB disk0
1: EFI 209.7 MB disk0s1
2: Apple_HFS Macintosh HD 749.3 GB disk0s2
3: Apple_Boot Recovery HD 650.0 MB disk0s3
/dev/disk1
#: TYPE NAME SIZE IDENTIFIER
0: FDisk_partition_scheme ∗3.9 GB disk1
1: Windows_FAT_32 58.7 MB disk1s1
2: Linux 3.8 GB disk1s2

Unmount any automounted partitions for disk1:

$ diskutil unmountDisk /dev/disk1
Unmount of all volumes on disk1 was successful
$

Likewise, insert the destination SD card and use diskutil to get its device name
(mine was /dev/disk2). Unmount all file systems that may have been automounted for it
(diskutil unmountDisk).

At this point, you can perform a file system image copy:

$ dd if=/dev/disk1 of=/dev/disk2 bs=1024k
3724+0 records in 3724+0 records out
3904897024 bytes transferred in 2571.524357 secs (1518515 bytes/sec)
$

A���������
Adafruit Pi Cobbler, 5, 7
ARM compiler options, 103

B���������
Bare Metal, 8
Booting

ARM linux, 9
cmdline.txt ile

autoconiguration protocols, 42
command-line options, 37
elevator, 39–40
IP number, 42
kgdboc parameter, 39
nfsroot option, 40, 42
NOOBS distribution, 36
root ile system, 39
rootfstype parameter, 39
rootwait, 40
serial console, 37
virtual console, 38–39

conig.txt ile
boot_delay parameters, 27
cmdline option, 24
composite video settings, 11
device_tree_address, 26
disable_commandline_tags, 24
disable_l2cache option, 23
display_rotate option, 21
frame bufer settings, 20–21
GPU memory, 23–24
HDMI (see High-Deinition Video)
init_emmc_clock

parameter, 26
init RAM ile system, 26
init_uart_baud option, 26

init_uart_clock parameter, 26
kernel_address, 25
licensed codecs, 22
overclocking (see Overclocking)
overscan video, 20
over SDRAM voltage, 36
over_voltage_min, 36
ramfsile parameter, 25
safe mode, 27
SDRAM controller voltage, 36
SDRAM I/O voltage, 36
SDRAM physical voltage, 36
start.elf, 25
switched-mode power, 34
testing, 22
voltage parameter values, 35

emergency kernel, 43–44
events, 10
process, 10
RISC code, 9

C���������
Cross-compiling

64-bit platforms, 65
building

conigure crosstool-NG, 68
create /opt/x-tools, 68
download crosstool-NG, 67
install package

dependencies, 68
staging directory, 67
tarball

crosstool-ng-1.19.0.tar.bz2, 67
build/local environment, 64
coniguration

Binary Utilities menu, 73
build process, 75

Index

107

■฀INDEX

108

C compiler, 74
Linux Kernel Version, 73
Paths and Misc Options, 70
save prompt, 75
Target Options, 72

crosstool-NG software, 68–69
destination platform, 63
embedded computers, 63
environment development, 66
guest environment, 64
host environment, 64
installation, 69
issues, 63–64
kernel (see Kernel)
local platform, 63
operating system, 64
PATH environment, 69
target environment, 64
tools, 63
troubleshooting, 77–78
VirtualBox, 65

D, E���������
Destination platform, 63

F���������
Fahnestock clips, 6

G���������
Gertboard, 7–8

H���������
High-Deinition Video

avoid EDID fuzzy match, 14
CEC initialization, 19
conig_hdmi_boost

parameter, 19
drive, 13
force EDID audio, 14
force hot-plug, 13
hdmi_edid_ile, 14
hdmi_group option, 15
hdmi_ignore_hotplug, 13
hdmi_safe parameter, 12
ignore EDID, 14
mode settings, 15

I, J���������
Initialization

changing run levels
halt and reboot, 53
single-user mode, 52
telinit, 51

/etc/inittab
ields, 46
init actions, 47
initdefault, 46

inittab action respawn, 51
new service creation

rebooting, 53
startup/kill scripts, 53

once action, 50
Raspbian run levels, 45–46
run level, 45
startup sequence

boot/bootwait, 48
run level, 50
runlevel, 49
sysinit, 48

wait init action, 50

K���������
Kernel

boot failure, 86
coniguration, 83
downloading, 81
edit Makeile, 81
irmware, 87–88
image installation, 85
image preparation, 84
image tools, 79
making coniguration changes, 84
menuconig, 83
modules, 86
mrproper, 82
VirtualBox, 88

L���������
Linux console

lags meaning, 62
/proc/consoles, 61
/proc/consoles ields, 61
serial console, 62

Linux Kernel Version, 73
Local platform, 63

Cross-compiling (cont.)

■฀INDEX

109

M, N���������
Mac OS X

Mac diskutil command, 105
SD cards, 105

MacPorts collection nmap command, 1

O���������
Overclocking

BogoMIPS, 28
core frequency, 29
GPU frequency, 28–29
PLL frequency, 28
standard clock proiles, 29
vcgencmd, 28
warranty

ARM CPU frequency, 31
avoid_pwm_pll, 34
core frequency, 32
description, 30
force turbo mode, 30
GPU frequency, 32
H.264 frequency, 33
initial turbo, 30–31
ISP frequency, 33
SDRAM frequency, 33
temperature limit, 31
V3D frequency, 33

P, Q���������
Phase-locked loop (PLL), 28
Power standards, 97
Process ID number (PID), 45
Prototype station, 6
Prototype station

Adafruit Pi Cobbler, 5
LED, 7
retro Fahnestock clips, 6
RS-232 PCB, 6
testing, 7

R���������
Raspbian apt commands

installation, 101–102
kernel sources, 102
listing, 99–100
removing, 102

searching, 100–101
updation, 102
upgrade, 102

S, T���������
scp command, 2
sdtv_aspect parameter, 12
sdtv_disable_colourburst parameter, 12
sdtv_mode parameter, 11
Secure Shell (SSH)

scp command, 2
xhost command, 2

Serial console, 62
Static IP Address, 1

U���������
Ubuntu/Debian build

environment, 66
Ubuntu Linux, 5

V, W���������
vcgencmd

codec_enabled, 59
commands, 55
description, 56
get_conig option, 60
get_lcd_info, 59
measure_clock, 57–58
measure_temp, 58
measure_volts, 58
version option, 59

Virtual Network Computing (VNC) server
depth, 4
display number, 3
geometry, 4
installation, 3
password prompts, 3
password setup, 4
pixel format, 4
server startup, 4
SSH, 3
stopping, 5
viewers, 4–5

X, Y, Z���������
X Window System, 2

Raspberry Pi
System Software

Reference

Warren W. Gay

Raspberry Pi System Software Reference

Copyright © 2014 by Warren W. Gay

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0797-0

ISBN-13 (electronic): 978-1-4842-0796-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Stewart Watkiss
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editors: Sharon Wilkey and Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

his book is dedicated to the memory of my father, Charles Wallace Gay,
who passed away this year. He didn’t remember it when we discussed it last,
but he was responsible for sparking my interest in electronics at an early age.
He had brought home from his used-car business two D cells, a piece of blue
automotive wire, and a lashlight bulb. After showing me how to hold them

together to complete the circuit and light the bulb, I was hooked for life.

I am also indebted to my family for their patience. Particularly my wife
Jacqueline, who tries to understand why I need to do the things I do with wires,
solder, and parts arriving in the mail. I am glad for even grudging acceptance,
because I’m not sure that I could give up the thrill of moving electrons in some

new way. Sometimes hobby electronics projects have no real justiication
beyond “because we can!”

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

Chapter 1: Preparation ■ ... 1

Static IP Address ... 1

Using SSH .. 2

VNC .. 3

Display Number .. 3

Geometry .. 4

Depth .. 4

Pixel Format.. 4

Password Setup .. 4

Server Startup .. 4

VNC Viewers ... 4

Stopping VNC Server .. 5

Prototype Station ... 5

Adafruit Pi Cobbler .. 7

Gertboard .. 7

Bare Metal ... 8

■ CONTENTS

viii

Chapter 2: Boot ■ ... 9

Booting ARM Linux .. 9

Boot Sequence .. 10

Boot Files .. 10

config.txt ... 11

Composite Video Settings ... 11

High-Definition Video .. 12

Overscan Video ... 20

Frame Buffer Settings .. 20

General Video Options ... 21

Licensed Codecs ... 22

Testing .. 22

Memory .. 23

Boot Options ... 24

Overclocking ... 27

Warranty and Overclocking .. 29

Voltage Settings .. 34

cmdline.txt ... 36

Serial console=... 37

Virtual console= ... 38

kgdboc= ... 39

root= ... 39

rootfstype= ... 39

elevator= .. 39

rootwait= .. 40

nfsroot= .. 40

ip= .. 42

Emergency Kernel ... 43

■฀CONTENTS

ix

Chapter 3: Initialization ■ .. 45

Run Levels ... 45

/etc/inittab ... 46

inittab Action initdefault ... 46

General Startup Sequence .. 48

inittab Action wait ... 50

inittab Action once .. 50

inittab Action respawn .. 51

Changing Run Levels ... 51

telinit... 51

Change of Run Level ... 52

Single-User Mode ... 52

Halt and Reboot .. 53

Creating a New Service ... 53

Chapter 4: vcgencmd ■ .. 55

vcgencmd Commands ... 55

Option measure_clock .. 57

Option measure_volts ... 58

Option measure_temp ... 58

Option codec_enabled... 59

Option version ... 59

Option get_lcd_info ... 59

Option get_config .. 60

Chapter 5: Linux Console ■ .. 61

Available Consoles .. 61

Serial Console ... 62

■ CONTENTS

x

Chapter 6: Cross-Compiling ■ .. 63

Terminology ... 63

Operating System .. 64

Host, Guest, Build, and Target .. 64

Platform Limitations ... 65

Without VirtualBox (Native) ... 65

Using VirtualBox (Ubuntu/Linux) ... 65

Planning Your Cross-Development Environment 66

Building the Cross-Compiler ... 67

Download crosstool-NG .. 67

Staging Directory .. 67

Unpack the Tarball .. 67

Create /opt/x-tools .. 68

Install Package Dependencies .. 68

Configure crosstools-NG ... 68

make crosstool-ng .. 69

make install ... 69

PATH .. 69

Cross-Compiler Configuration ... 70

Paths and Misc Options .. 70

Target Options .. 72

Operating System ... 73

Binary Utilities .. 73

C Compiler .. 74

Save Configuration ... 75

Build Cross-Compiler .. 75

Troubleshooting .. 77

■฀CONTENTS

xi

Chapter 7: Cross-Compiling the Kernel ■ .. 79

Image Tools ... 79

Download Kernel ... 81

Edit Makefile ... 81

make mrproper.. 82

Kernel Config ... 83

make menuconfig ... 83

make ... 84

Prepare Kernel Image .. 84

Install Kernel Image .. 85

Boot Failure .. 86

Modules ... 86

Firmware ... 87

VirtualBox Mount of SD Card ... 88

Appendix A: Glossary ■ .. 91

Appendix B: Power Standards ■ .. 97

Appendix C: Raspbian apt Commands ■ .. 99

List Available Packages ... 99

List Installed Packages .. 99

List Files for Package .. 100

Perform Package Search ... 100

Install a Package ... 101

Remove a Package .. 102

■ CONTENTS

xii

Install Updates ... 102

Upgrade ... 102

Obtain Kernel Sources ... 102

Appendix D: ARM Compile Options ■ ... 103

Appendix E: Mac OS X Tips ■ ... 105

Index .. 107

xiii

About the Author

Warren W. Gay started out in electronics at an
early age, dragging discarded TVs and radios home
from public school. In high school he developed a
fascination for programming the IBM 1130 computer,
which resulted in a career plan change to software
development. After attending Ryerson Polytechnical
Institute, he has enjoyed a software developer career for
over 30 years, programming mainly in C/C++. Warren
has been programming Linux since 1994 as an open
source contributor and professionally on various Unix
platforms since 1987.

Before attending Ryerson, Warren built an Intel
8008 system from scratch before there were CP/M
systems and before computers got personal. In later
years, Warren earned an advanced amateur radio
license (call sign VE3WWG) and worked the amateur

radio satellites. A high point of his ham radio hobby was making digital contact with the
Mir space station (U2MIR) in 1991.

Warren works at Datablocks.net, an enterprise-class ad serving software services
company. here he programs C++ server solutions on Linux back-end systems.

xv

About the Technical
Reviewer

Stewart Watkiss graduated from the University of Hull,
United Kingdom, with a masters degree in electronic
engineering. He has been a fan of Linux since irst
installing it on a home computer during the late 1990s.
While working as a Linux system administrator, he
was awarded Advanced Linux Certiication (LPIC 2)
in 2006, and created the Penguin Tutor website to
help others learning Linux and working toward Linux
certiication (www.penguintutor.com).

Stewart is a big fan of the Raspberry Pi. He
owns several Raspberry Pi computers that he uses
to help to protect his home (Internet ilter), provide
entertainment (XBMC), and teach programming to his

two children. He also volunteers as a STEM ambassador, going into local schools to help
support teachers and teach programming to teachers and children.

http://www.penguintutor.com

xvii

Acknowledgments

In the making of a book, there are so many people involved. I irst want to thank Michelle
Lowman, acquisitions editor, for her enthusiasm for the initial manuscript and pulling
this project together. Enthusiasm goes a long way in an undertaking like this.

I’d also like to thank Kevin Walter, coordinating editor, for handling all my email
questions and correspondence, and coordinating things. I greatly appreciated the
technical review performed by Stewart Watkiss, checking the facts presented, the
formulas, the circuits, and the software. Independent review produces a much better
end product.

hanks also to Sharon Wilkey for patiently wading through the copy edit for me.
Judging from the amount of editing, I left her plenty to do. hanks to Douglas Pundick,
development editor, for his oversight and believing in this book. Finally, my thanks to all
the other unseen people at Apress who worked behind the scenes to bring this text to print.

I would be remiss if I didn’t thank my friends for helping with the initial manuscript.
My guitar teacher, Mark Steiger, and my brother-in-law’s brother, Erwin Bendiks, both
volunteered their time to help me with the irst manuscript. Mark has no programming or
electronics background and probably deserves an award for reading through “all that stuf.”
I am indebted also to my daughter Laura and her husband Michael Burton, for taking the
time to take my photograph, while planning their wedding at that time.

here are so many others I could list who helped me along the way. To all of you,
please accept my humble thanks, and may God bless.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

